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electrostatic charging of a double layer or through a Faradaic reaction or through both mechanisms. It has oo = o 4 o
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£ g g E at various current densities and of electrode and at various current densities and of effective conductivity (al
g 3 = g electrolyte effective conductivity (al & a2) of ()50S/cm & a2) of (a)0.55/cm & 0.005S/cm, (b) 0.055/cm & 0.0005
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Figure 1. (a) symmetric electrochemical capacitor cell, (b) asymmetric electrochemical capacitor cell showing oa — — o — i a SN
various functional layers on the macroscale [1]. S 2//_//””’ > A e s
@ TS e e w W w w W w | |S e e wmo U ®m ® @ w wm o
AI MS AN D OBJ ECTIVES . Electrode Thickness cm - Pover Density (Wkq) o o pe i
g 5 £ =
: ) : ) ] 5 E ] E e
The aims of this study is to develop mathematical models for various of ECs and s B = — A 2 :[""fiﬁrfgz%
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build theoretical basis to examine the effects of self-discharge, operating conditions and design = T P = et o=t z -
configurations on the Performance of the devices. To also optimize the ECs design parameters and T —Go-ammaen’ wesozen)| | | S a
operating conditions for high energy and power performances . Also to develop a realistic guideline for = of poamam s | 12, i e
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THE MATHEMATICAL MODELS Figure 8. Specified capacitance for various electrode Figure 9. Ragone plots of ECs with various effective

widths at various current densities (a) per square  conductivities al=50S/cm, a2 =0.58/cm charged at (a)

2 centimetre (cm?), and (b) per kilogram of the ECs. 0.00533A/cm? for 18000s, (b) 0.0533A/cm? for 1800s, (c)
09, (x,t) _ g2 0w Ex ), dw (1) 1 0.533A/cm? for 180s, and (d) 5.33A/cm? for 18s.
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Figure 2: Electrode potential profiles as a function of Figure 3: EC voltage dependence on time during charge ° c,w.n&,.,,zﬂwm
position after after charge process for(a) EC without self- = process from 0V to 1.2V for (a) EC without self-discharge
discharge (b) EC with self-discharge due to only EDLs = (b) EC with self-discharge due to only EDLs instability, and

instability, and (c) EC with self-discharge due to both side- = (c) EC with self-discharge due to both side-reactions/redox

reactions/redox reactions and EDLs instability. reactions and EDLs instability.
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E = =1 = ECs with self-discharge loss some of the storable energy as self-discharge during the device charging and discharging
S o 2 = processes. Charging and discharging the device fast reduced the rate of the self-discharge. The amount of current
o1 o ® 5 K density that should be employed to successfully charge ECs is greatly dependent on the effective conductivities of the
< _‘; st I ? vy electrode and electrolyte as well as electrodes thickness. Therefore, ECs of low electrode and electrolyte effective
S S S B e S R conductivities cannot be charged effectively at high current density, because potential drops in the liquid-phase will be
T = o i = as high as half the cell’s voltage. The typical length scale [w,] over which liquid potential drop occurs can be employed as
= o o o B4 o w050 b T T ] e e design parameter to optimize electrodes thickness for ECs designed to function under a given current density spans.
Time of charge (s) Time of charge (s) Time of charge(s) Time of charge(s) Ragone plots of ECs with diverse electrode thicknesses and different effective conductivities al and a2 charged at
) ) ) different current densities can be utilized to select electrode dimensions to attain a given energy and power density
Figure 4: The voltage decay of asymmetric ECs of various ~ Figure 5: The voltage decay of asymmetric ECs over time by specifications . Asymmetric EC with suitable electrode mass and operating potential range ratios has over two-fold Eg,,
electrodes effective conductivity over time by self- = self-discharge due to both side-reactions/redox reactions Egis» EDmax @nd PDp,, higher than those of symmetric EDLC using the same aqueous electrolyte. Also, asymmetric EC
discharge due to both side-reactions/redox reactions and  and EDLs instability for charge process from 0.8V to 2.0V proper electrode mass and operating potential range ratios joined with appropriate organic electrolyte has over five-fold
EDLs instability for charge process from 0.8V to 2.0V (a) = (a) 18000s charging,(b) 1800s charging, (c) 180s charging Ech» Egiss EDmax @nd PDpay higher than those of similar asymmetric EC using aqueous electrolyte. These results can be a
18000s charging, (b) 1800s charging, (c) 180s charging and  and (d) 18s charging. great guideline for design, fabrication and operation of EC of outstanding performance in terms of high energy and power
(d) 18s charging. \\densities.
Mathematical eIIing,ﬂminn d optimizati i i materials Ike, |. S.; lakovos, S.; lyuke, S. and Ozoemena, K. I. is

licensed under a Creative Commons Attribution-NonCol |-NoDe 4.01r License.




