Mathematical Modelling, Design, and Optimization of Electrochemical Capacitors from Layered Materials
of the Witwatersrand, Johannesburg, South Africa

INTRODUCTION

Electrochemical Capacitors (Ecs) are electrical energy storage devices that store charges through either electrostatic charging of a double layer or through a Faradaic reaction or through both mechanisms. It has
higher energy density than conventional electrostatic capacitors and as well higher power density than higher energy density than conventional electrostatic capacitors and as well higher power density than
batteries in general.The key performance parameters of electrochemical capacitors are specific capacitance, energy density, power density, rate capability and cycling stability

Figure 1. (a) symmetric electrochemical capacitor cell, (b) asymmetric electrochemical capacitor cell showing
various functional layers on the macroscale [1].

Abstract

AIMS AND OBJECTIVES The aims of this study is to develop mathematical models for various of ECs and build theoretical basis to examine the effects of self-discharge, operating conditions and design configurations on the Performance of the devices. To also optimize the ECs design parameters and design optimal design of ECs enhanced performance parameters like specific energy, power density,

THE M ATHEM ATICAL MODELS

RESULTS AND DISCUSSIONS

Figure 2: Electrode potential profiles as a function of
position after after charge process for (a) EC without self. $\begin{array}{ll}\text { position after after charge process } \\ \text { discharge } & \text { (b) EC with self-discharge due to only EDLS }\end{array}$ reactions/ redox reactions and EDLs instability.

Figure 6. Solid-phase potential drop for ECs charged
at various current densities and of electrode and at various current densities and of electrode and at various current densities and of effective conductivity (a) $\& 0.5 \mathrm{~S} / \mathrm{cm}$, (b) $5 \mathrm{~S} / \mathrm{cm} \& 0.05 \mathrm{~S} / \mathrm{cm}$; liquid-phase potential S / cm; liquid-phase potential drop for ECS chare drop for ECS charged at various current densities and of a1 various current densities and of al and a2 of (c) $0.5 \mathrm{~S} / \mathrm{cm}$ \& and a 2 of (c) $50 \mathrm{~S} / \mathrm{cm} \& 0.55 / \mathrm{cm}$, (d) $55 / \mathrm{cm} \& 0.005 \mathrm{~S} / \mathrm{cm}$; $\quad 0.005 \mathrm{~S} / \mathrm{cm}$, (d) $0.05 \mathrm{~S} / \mathrm{cm} \& 0.00055 / \mathrm{cm}$;

Figure 8. Specified capacitance for various electrode $\begin{aligned} & \text { Figure 9. Ragone plots of ECs with various effectiva } \\ & \text { widths at various current densities } \\ & \text { (a) per square } \\ & \text { conductivities } \alpha 1=50 \mathrm{~S} / \mathrm{cm}, \mathrm{a} 2=0.5 \mathrm{~S} / \mathrm{cm} \text { charged at (a) }\end{aligned}$ centimetre (cm^{2}), and (b) per kilogram of the ECs. $\quad 0.00533 \mathrm{~A} / \mathrm{cm}^{2}$ for 18000 s , (b) $0.0533 \mathrm{~A} / \mathrm{cm}^{2}$ for 1800 s , (c)
 Figure 10. Profile of the value of $K_{B M}$ as a function of the mass and
operating potential window ratio factors of the battery-kind electrode for 3-D side view of (a) side of $0<k 1 \leq 1$ and $0<k 2 \leq 1$

Figure 11. Prof limits and : (b) shide view of (a) side of $0<K 1 \leq 1$ and $0<K 2 \leq 1$ higher values of both energy and power density of side of $0<k 1$ the values of energy and power density of ≤ 0.5 and $0<k 2 \leq 0.7$ limits

CONCLUSIONS

