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ABSTRACT 

This research work is aimed at the development of computer programs using MATLAB 

based on the new polynomial shape functions, for analysis of single panel and continuous 

thin isotropic rectangular plates. Twelve single panel plate types of different boundary 

conditions namely SSSS, CCCC, CSSS, CSCS, CCSS, CCCS, SSFS, SCFS, CSFS, CCFS, 

SCFC and CCFC for aspect ratio, s= b/a, were analyzed for pure bending, buckling and free 

vibration using computer programs developed in this work. Expressions were derived and 

MATLAB codes were applied systematically to develop the programs. Furthermore, both 

one-way and two-ways continuous plates were analyzed for fixed edge and support 

moments. These continuous plates were divided into single panels, strip sections were taken 

and analyzed manually using stiffness method, for support and span moments. After which 

programs were developed for analyzing the continuous plates. For single panel plates, the 

values of 'u','α' ,'β', 'β1' 'δ' and 'δ1' been coefficients of amplitude, deflection, center moments 

in x- and y- directions, and shear force in x- and y- direction respectively, were obtained for 

aspect ratio of 1.0, 1.2,1.4, 1.5,1.6 and 2.0, for each plate condition. For instance, for aspect 

ratio1.0, the values 'u', 'α', 'β', 'β1' 'δ' and 'δ1' for SSSS plate obtain are 0.04236, 0.00414, 

0.05163, 0.05163, 0.07491, and 0.37491 respectively. Also values of 'n' and 'ƒ' been 

coefficients of critical buckling load and fundamental natural frequency respectively were 

obtained. The values for 'n' and 'ƒ' for aspect ratio of 1.0 for SSSS plate, are 39.508 and 

19.749 respectively. To validate the values, these coefficients were compared with existing 

literatures, and the percentage differences were insignificant, hence considered adequate. For 

continuous plate, the results from both the manual and computer programs developed were 

compared, and were found to have percentage differences of less than 1%, indicating that 

they are very close to each other. Hence, consider adequate. Therefore, the conclusion that, 

the developed computer programs are adequate, easy, quicker and accurate way of analyzing  

Thin Rectangular Single Panel Isotropic Plates and Continuous Plates, and also that, 

polynomial shape functions are adequate and less cumbersome for analysis of Continuous 

plates. 

Key Words:  Ritz equation, Total energy functional, Pure bending, Polynomial series, 

Shape functions, Critical buckling load, Fundamental frequencies, Single panel plate, 

Continuous plate, MATLAB and Computer Program. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Plates are straight, plane, two-dimensional structural components, in which one 

dimension, known as the thickness; ‘h’, is much smaller than the other 

dimensions (Szilard, 2004). They are bounded geometrically by either straight 

or curved lines. They are similar to beams, but do not serve as structural 

components only. They can also form complete structures such as slab-bridge. 

The two-dimensional structural action of plates, result in lighter structures and 

offer economic advantage.  

 

Consequently, plates and plate-type structures, have gained special importance 

and notably increased in applications in recent years (Szilard, 2004).  A large 

number of structural components in engineering structures, can be classified as 

plates. Some practical examples of plates in civil engineering structures, are 

bridge deck and slab bridges, floor and foundation slabs, thin retaining walls, 

etc. Plates are also indispensible in aerospace and ship building industries. They 

also form machine parts of some mechanical devices. 

 

Plates can be classified as thin or thick plate, based on their thickness, 'h', and 

different principles are used in analyzing them. They may also be isotropic or 

orthotropic plate;  linear-elastic  plate, based on stress-strain relationship 

defined by Hooke's law,  or non-linear elastic; rectangular or circular or 

triangular or trapezoidal plate; and can be single panel or continuous over 

supports.  
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In classical or equilibrium approach, plate problems have been formulated and 

analyzed by many researchers or scholars such as Navier, Levy and 

Timoshenko as cited in Ibearugbulem et al. (2012), using trigonometric 

formulated shape functions. Others went ahead to use energy and numerical 

methods, due to the difficulties in using classical method to obtain solutions to 

plates. None of these methods and scholars used Taylor -Maclaurin's series, to 

represent the deformed shape function in formulation of plate problems, and in 

the determination of the parameters, such as forces, moment, displacement etc 

(Ibearugbulem et al., 2012).  

 

With the advent of high-capacity computers, which have opened another 

window for easy analysis and modeling of plate problems, various computer 

languages, have been developed, such as MATLAB, FORTRANS, MINITAB, 

and Object-Oriented Programming Languages such as Java, C, C++, Visual 

Basic Lanaguages. The applications of these languages in the development of 

computer programs, have made it imperative to ease the difficulties of designers 

and researchers. One of such computer software is WinPlate Primer Software, 

which was developed by Szilard based on finite element method that employs 

trigonometric shape functions (Szilard, 2004).  
 

The works of  Navier  and  Levy on pure bending of thin rectangular plate with 

all the four edges simply supported(i.e SSSS plate), which both employed direct 

integration of the differential equation based on assumed trigonometric shape 

function, had a percentage difference of 2.4% on the average (Ibearugbulem, 

2013). Some others such as Hartman (1991), Ugural (1999), and Ventsel and 

Krauthammer (2001), went ahead to use approximate methods (i.e energy and 

numerical approaches) to obtain the solution for the same SSSS plate. However, 

all the results they obtained were different, even though the differences were 

marginal for maximum deflection. 
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Due to the difficulties in using both exact and approximate methods and the 

differences between the results obtained from both methods, Ibearugbulem et al. 

(2013) used Taylor-Maclaurin's series to represent the deformed shape function 

of SSSS plate, and hence obtained results that were comparable to the existing 

results, even though, it still has minimal difference in maximum deflection. 

Ibearugbulem (2011), applied this same series and obtain the critical buckling 

load for the same SSSS plate. Njoku et al. (2013), used this Taylor-Maclaurin's 

series formulated-shape function in Galerkin's equations, to analyze the free 

vibration of thin rectangular isotropic CCCC plate, and theresults they obtained 

were close to those obtained by Ventsel and Krauthammer (2001).  It is of no 

doubt, that the use of Taylor-Maclaurin’s formulated-shape functions, has 

alleviated greatly the difficulties earlier encountered using both exact and 

approximate methods. 

 

But, there is dearth of literature in the area of plate analysis using computer 

programmes based on polynomial formulated-shape function and not to talk of 

using computer programmes written in Matlab programming language for 

analyzing plate problems in pure bending, buckling, and free vibration of plate. 
 

Furthermore, there is no evidence at all that Taylor-Maclaurin's series 

formulated shape functions, has been applied in the analysis of continuous 

plates spanning in one way and continuous plates spanning in two ways. In 

addition, there is no evidence of the existence of any computer software 

program using Matlab for such analysis.  

 

Hence, this research work, encompasses analysis and development of computer 

programs written in Matlab programming language for analyzing thin isotropic 

linear-elastic single panel and continuous rectangular plates using polynomial 

series formulated -shape functions in Ritz energy equation.  It involves the 

analysis and programming of twelve different single panel plate cases based on 
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their edge conditions so as to determine the deflection, moments, and shear 

forces. Also, the programs analysis continuous plate spanning in one way and 

spanning in two ways to obtain fixed edge moment. Stiffness method of 

analysis, was dopted in the analysis of the continuous plate for the support and 

span moments.  

 

1.2 Statement of the Problem 

Analysis of single panel and continuous rectangular plates using both classical 

and approximate methods, is too rigorous and time consuming, which results in 

most times, to computational errors.  Hence, there is the need for a simplified 

approach to rectangular plate analysis by developing interactive computer 

programs to help analysts do their work with less time and effort. This work, is 

concerned with the development of computer programs written in Matlab 

language for pure bending, stability and free vibrational analysis of single panel 

rectangular isotropic plates and continuous rectangular plates. 

  

In addition, Szilard (2004), noted that classical analysis of continuous plate -

with the exception of the simplest cases- is quite cumbersome. Also, 

Timoshenko and Woinowsky-Krieger(1959) observed that the application of the 

rigorous classical methods to the design of continuous plates or floor slabs, 

often leads to cumbersome calculations and that the accuracy of results 

obtained, is illusory on account of many more or less indeterminable factors 

affecting the magnitude of the moments of the plate. It is seen clearly from the 

above statements by eminent scholars in this field that, continuous plate analysis 

based on manual computation is highly tedious and limited in application to real 

life problems. Hence, the need to develop computer programs to enhance the 

analysis of continuous plates is imperative. Therefore, this work is timely and 

very vital to designers’ of plate structures. 
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1.3 Objectives of the Study 

The main objective of this research work, is to develop computer programs for 

analysis of single panel and continuous rectangular plates. And the specific 

objectives are as follows: 

(i) To develop computer programs for the analysis of single panel 

rectangular plates in pure bending. In all, twelve(12) different plate cases 

with various boundary conditions, (namely, SSSS, CCCC, CSSS, CSCS, 

CCSS, CCCS,SSFS, SCFS, CSFS, CCFS, SCFC and CCFC plates) were 

treated; 

(ii) To develop computer programs for the buckling/stability analysis of the 

same twelve single panel rectangular plate cases considered above; 

(iii) To develop computer programs for the free vibration analysis of the same 

twelve single panel rectangular plate cases. 

(iv) To analyze and develop computer programs for the analysis of continuous 

plate  spanning in one way; 

(v) To analyze and develop computer programs for the analysis of continuous 

plate spanning in two ways. 

(vi) To compare the results of the computer programs with other results. 

1.4 Justification of the Study 

Solving the partial governing differential plate equations manually based on 

trigonometric assumed shape functions, has not been easy for researchers and 

practitioners. It is tedious, laborious and time consuming. For this reason, many 

people, have not benefited from the numerous advantages of plate structures. 

But, the computer programs developed in this work, will simplify the analysis 

of thin isotropic rectangular plates and give quick analysis of plates. This will 

therefore, save time and effort spent in obtaining useful results, unlike the 

traditional tedious approaches earlier mentioned. 
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Furthermore, the use of plates in aerospace and ship building, is indispensible 

because of their light weight and their ability to be folded easily to various 

shapes. The programs develop in this work would open a new window for more 

programs to be developed (based on polynomial formulated shape functions) to 

simplify more complex plate analysis in this areas. 

1.5 Scope of the Study 

In this work, the analysis and computer modeling of pure bending of thin, 

isotropic, linear elastic single panel rectangular plate case with twelve different 

boundary/ edge conditions (namely, SSSS, CCCC, CSSS, CSCS, CCSS, 

CCCS,SSFS, SCFS, CSFS, CCFS, SCFC and CCFC) were treated. In addition, 

the buckling/stability analyses of thin isotropic linear elastic single panel 

rectangular plate cases with twelve different boundary/ edge conditions were 

carried out.  

 

Also, covered in this project, are free vibration analyses of thin isotropic linear 

elastic single panel rectangular plate cases with same twelve different boundary/ 

edge conditions as above. 
 

Finally, the analysis and computer modeling of continuous plates spanning in 

one way and continuous plates spanning in two ways, were treated. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Pure Bending Analysis 

Pure bending analysis of rectangular plate, has been carried out by various 

researchers in the past, among them are Timoshenko and Woinowsky-Krieger 

as cited by Ibearugbulem et al. (2012), who gave a great insight into plate 

analysis. They laid the solid foundation of the traditional classical approach, 

which uses trigonometric shape functions in plate analysis. They analyzed 

rectangular plates with various boundary conditions under various load 

applications and obtained results which serve as references in theory of plate 

today.  

 

Pure bending of plate involves a combination of bending in two perpendicular 

directions. There are various methods or approaches used for the analysis of 

rectangular plate in bending; examples are classical or equilibrium method, 

energy method and numerical method. Szilard (2004) reported that classical 

solutions of the partial differential equation of plates, are far more difficult. He 

further stated that, one can transform this partial differential equation into 

ordinary differential equation by separating the variables.  

 

Ventsel and Krauthammer (2001) analyzed a rectangular plate using classical 

approach by assuming trigonometric shape functions. They began the 

application of the development of plates bending theory with the thin 

rectangular plates. They reiterated that, thin rectangualar plates represent an 

excellent model for the development of plates and serve as a check of various 

methods for solving the governing differential equation. In their work, they 

considered some mathematically exact solutions in the form of double and 

single trigonometric series applied to rectangualar plates with various types of 
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supports and transverse loads, plates on elastic foundation and continuous 

plates. Also, according to Szilard (2004), a mathematically exact stress analysis 

of a thin plate- subjected to loads acting normal to its surface requires solution 

of the differential equations of three dimensional elasticity. Such method 

however, mostly lead to insurmountable mathematical difficulties.  

 

Considering the unique position classical plate theory occupies on the subject of 

plates. The formulation is in term of transverse deflection w(x, y), for which the 

governing differential equation is the fourth order, which need only two 

boundary conditions to satisfy at each edge. In analyzing plate bending 

problems, Szilard (2004) added that, there are four types of mathematically 

exact solutions available for plate problems, namely, closed –form solution, 

solution of the homogenous biharmonic equation upon which a particular 

solution of the governing differential equation of the plate is superimposed, 

double trigonometric series solution, and single series solution. 
 

From the works of  Navier  and  Levy on pure bending analysis of thin 

rectangular plate with all the four edges simply supported (i.e SSSS plate), 

using direct integration of the differential equation based on assumed 

trigonometric shape function, Ibearugbulem et al. (2013) found out that, the  

difference between their results was 2.4% average.  Ventsel and Krauthemmer 

(2001), expantiated on Navier’s solution of the governing differential equation, 

which was developed based on double trigonometric series for SSSS plate. 

According to them, the solution of the governing differential equation, that is, 

the expressions of the deflected surface, w(x, y), and the distributed surface 

load, P(x, y), have to be sought in the form of an infinite Fourier series. They 

further submitted that, the infinite series solution for the deflection generally, 

converges quickly; thus satisfactory accuracy can be obtained by considering 

only a few terms. They added that, since the stress resultants and couples are 
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obtained from the second and third directives of the deflection w(x, y), the 

convergence of the infinite series expressions of the internal forces and 

moments, is slow, especially, in neigbhourhood of the plate edges. This slow 

convergence, they said is also accompanied by some loss of accuracy in the 

process of calculation. They therefore, suggested that, one can improve the 

accuracy of solutions and convergence of series expressions of the stress 

resultants and couples by considering more terms in the expressions and by 

using a special technique for an improvement of the convergence of Fourier’s 

series. Due to the unsatisfactory bending moments and shear forces calculations 

from Navier’s approach, Ventsel and Krauthemmer (2001), commented that, 

Levy’s single Fourier series approach, is more practical, because it is easier to 

perform numerical calculations for single series than double series, and its 

applicability to plates covers various boundary conditions. 

 

Apart from the rigorous classical approach, which is almost extensively 

Newton’s law of equilibrium of forces in the development of differential 

equations for plates, the approach based on Bernoulli’s principle of virtual work 

which replaces the force vectors by work and potential energy can be used. 

Therefore, some researcher such as Hartman (1991), Ventsel and Krauthammer 

(2001), Ugural (2003), and Szilard (2004), used approximate methods (i.e 

energy and numerical approaches), based on trigonometric assumed shape 

functions, to obtained solution for the same plate with all the four edges simply 

supported (i.e SSSS) plate. But, all their results varied even though the 

differences were marginal, at the maximum deflection. 

  

According to Szilard (2004), energy methods may be preferable to the more 

rigorours classical solutions, for the fact that they are easier, both conceptually 

and mathematically; they are extremely powerful to obtain reusable analytical 

solutions, even for plates of arbitrary shape and boundary conditions, and 
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finally, they provide a valuable preparation for understanding the principle of 

finite element methods, which have rapidly become the most dominant 

numerical method in structural analysis. 

 

But, Ibearugbulem et al.(2013) analyzed a transversely loaded thin rectangular 

SSSS (i.e plate with all the four sides simply supported)  plate  by theoretically 

formulating the shape’s function based on Taylor-Maclaurin's series, which they 

substituted in Ritz energy equation to obtained deflection. The values of 

deflection coefficient obtained from the work when compared with other 

research works, gave an average percentage difference of about 3.63; and this 

indicates that Taylor-Maclaurin’s shape function is very close to the exact 

displacement shape function of SSSS plate. They concluded that the Taylor-

Macaurin’s shape function, is a close approximation of the exact displacement 

function of the deflected simply supported rectangular thin plate.    

 

Soon after, Ibearugbulem et al.(2014) carried out pure bending analysis of two 

rectangular thin plates, both having their three edges simply supported and the 

other one edge clamped or fixed (i.e SCSS and CSSS),  but with the two plates 

having  different orientation or platform, using a new approach. They carried 

out this by work principle, which requires substituting the formulated 

polynomial shape functions into the work error equation to obtain the results of 

deflection and moments of the plates. Wu et al. (2014), studied pure bending 

using finite plate analysis based on a nodal integration approach (i.e exact 

nodal-averaged shear strain method). They carried out this by finite element 

analysis of Reissner-Mindlin plates, in which a combination of the shear 

interpolation method for the plate element with an area-weighted averaging 

technique for the nodal integration of shear energy to relieve shear locking in 

the thin plate analysis as well as to pass  the pure bending patch test.  
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Ibearugbulem et al. (2013), recommended the use of direct integration and work 

principle as a new approach in pure bending analysis of isotropic rectangular 

plates.They analyzed SSSS rectangular plate by direct integration of the 

governing differential equation of isotropic rectangular plate. The shape 

function obtained was expressed in the form of Taylor series. 

 

Furthermore, Ibearugbulem et al. (2014), applied Ritz, Galerkin and work error 

methods in the derivation of pure bending equations. From the three methods 

used, the amplitude of deflection equation, which is a constant of the equation, 

for each method was obtained, and when they substituted the values of the 

shape function into each expression for the amplitude of the three methods, the 

results obtained, were the same. Also, the results obtained for deflection, edge 

and central moments, and edge shear force, were the same for the various aspect 

ratios used. They observed that, the range of aspect ratios in which the 

assumption of plate behavior based on energy approach, becomes valid is 

1≤s≤2.559461, where ‘s’ is the aspect ratio, is represented as b/a. Hence, for 

ultimate limit state design, they proposed the safe range of aspect ratios to be 

1≤s≤2.5. 

   

In addition, Ibearugbulem (2014), used the product of two mutually 

perpendicular truncated polynomial series as shape function for rectangular 

plate analysis. He carried out this by truncating the polynomial series at the fifth 

term in order to satisfy both the kinematic and kinetic boundary conditions. He 

opined that, the aim of this work, was to adopt this function as a very good 

approximation of the deflection function for first mode analysis of plate 

continuum. The results obtained from his work, was compared with the work of 

Timoshenko and Woinowsky-Krieger (1959) for aspect ratios 1 to 2, and the 

maximum percentage difference was 4.28 at aspect ratio of 2.  He concluded 
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that, the obtained data from using this truncated series function in energy 

methods, are very close to the data obtained from numerical and other methods. 

 

Polynomial shape functions have some how, ease the rigorous computation of 

plate bending analysis to some extent. However, there is still much time spent in 

manual computation. Therefore, there is a need to develop computer programs 

based on polynomial shape functions to aid in pure bending analysis of 

rectangular plates 
 

2.2 Buckling or Stability Analysis 

Nearly all structural materials have the tendency to buckle under loads, 

depending on the direction and magnitude of such applied loads. Various shapes 

of thin plates used in naval and aerospace structures, are subjected to normal 

compressive and shearing loads acting in middle plane of the plate considered. 

Plate buckling is of great practical impotance. The effect of variable in-plane 

forces on the buckling of rectangular plates, has been recently studied by several 

authors, such as, Szilard (2004), Iyenger (1988), etc. All these studies were 

based on the classical thin plate theory.  

 

According to Ventsel and Krauthammer (2001), the buckling load depends on 

the plate thickness, and in many cases, a failure of the plate elements, may be 

attributed to an elastic instability and not to the lack of their strength. They 

further stated that, the stability analysis of plate, is qualitatively similarly to the 

Euler stability analysis of column. In addition, they defined plate buckling as, 

the transition of plate from the stable state of equilibrium to the unstable one, 

and, the smallest value of the load producing buckling as the critical or buckling 

load. 
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Iyenger (1988), opined that the basic difference between a column and a plate, 

lies in the buckling characteristic. A column, once it buckles, cannot resist any 

additional axial load. Thus, the critical load of the column is also its failure 

load, while a plate, based on edge supports, continuous to resist the additional 

axial load even after 10-15 times the buckling load. This to him, means the 

postbuckling load (elastic) for plate is higher, and should be utilized when 

designing structural members to minimize the weight of the structure. He 

investigated thin rectangular plates using both equilibrium and energy 

approaches. 

 

Kang and Leissa (2001) presented the results for buckling factors of SS-F-SS-F 

plate, loaded by unidirectional in-plane moments. These results were very close 

to those obtained in existing literatures.  Later on, Leissa and Kang (2002) 

extended the study to SS-C-SS-C plate under the same loading type. The 

stability equation they obtained for the thin plate, can be separated in the two 

directions, as a product of two one-variable functions, and the solution obtained 

was exact. But, Bert and Devarakonda (2003) determined the buckling factors 

of rectangular plates with nonlinear in-plane stress distribution. They presented 

solution for the in-plane pre-buckling stress distributions in series form, and 

solved thin plate buckling equation only for simply supported plate.  

 

Shutrin and Eisenberger (2005), investigated the buckling of plate with variable 

in-plane forces, and found out that shear deformations, have significant effect 

on the stability of plates, and so must be included in the derivation of the 

buckling equations. Azhari et al. (2000) used the spline finite strip method, and 

they discovered that by adding bubble functions, they were able to improve on 

the results of buckling analysis of plates. They presented approximate solutions 

for two combinations of boundary conditions only.  
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Also, Kang and Shim (2004) extended the solution for plates with two opposite 

edges simply supported and any other boundary conditions on the other two 

edges. Romeo and Ferrero (2001) reported results of the analysis of anisotropic 

rectangular plates with bi-directional in-plane moment loading. They solved the 

buckling equation using the Rayleigh–Ritz method, by assuming beam vibration 

modes in the two directions and minimizing the total energy of the plate. Their 

results are approximate. 

 

Others who work on plate buckling using the trigonometric shape functions, are 

Szilard (2004) and Ventsel and Krauthammer (2001). They stated that, in 

mathematical formulation of elastic stability problems, neutral equilibrium is 

associated with the existence of bifurcation of the deformations. According to 

this formulation they said, the critical load can be identified with the load 

corresponding to the bifurcation of the equilibrium states. In other words, the 

critical load, is the smallest load at which both the flat equilibrium configuration 

of the plate and slightly deflected configuration, are possible. 

 

Some researchers recently took a different approach from the previous by using 

Taylor-Maclaurin’s series to ease the stress of the former. For example, 

Ibearugbulem et al. (2011), carried out buckling analysis of axially compressed 

thin rectangular SSSS plate using Taylor-Maclaurin's shape function in Ritz 

method. The results they obtained were very close to those obtained from the 

use of trigonometric shape function in of classical methods. He discovered that 

the buckling load decreased with increase in aspect ratio. Also, Ibearugbulem et 

al. (2012), carried out instability analysis of axially compressed CCCC thin 

rectangular plate using Taylor -Maclaurin's series shape function in Ritz 

method. The results obtained were satisfactory when compared with those 

available in existing literatures. Furthermore, Ibearugbulem et al. (2012), 
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applied direct variational principle in elastic stability of rectangular flat thin 

plate.   

 

In addition, Onwuka et al. (2013), carried out plastic buckling of thin 

rectangular SSSS plates subjected to uniaxial compression using Taylor-

Maclaurin’s shape function. From their result, they concluded that the use of 

Taylor Maclaurin’s shape functions is adequate in plastic analysis of SSSS 

plates. Ezeh et al (2013), investigated the use of polynomial shape functions in 

the buckling analysis of CCFC rectangualar plate. They approach this by 

obtaining a peculiar shape function, which they substituted in Ritz energy 

equation to obtain the critical buckling load. They plotted the graph of critical 

buckling load against aspect ratio. It was discovered that for aspect ratios of 0.4, 

0.5 and 1.0, the critical buckling loads coefficients were 26.94, 17.39 and 4.83. 

It was also observed from the behavior of the graph that as aspect ratio 

increased from 0.1 to 2.0, the critical buckling load decrease.   

 

Also, Ezeh et al. (2014a), worked on elastic stability analysis of a clamped thin 

rectangular flat plate using Galerkin's indirect variational method. Their results 

were compared adequately with established results. In addition, Ezeh et al 

(2014), investigated the behavior of buckled CSFS isotropic rectangular plate 

using polynomial series shape function in Ritz method. From the graph of 

crtical buckling load against aspect ratio, it was observed that as the aspect ratio 

increases from 0.1 to 2.0, the critical buckling load decreases. For aspect ratio of 

0.2, 0.4, 0.8, 1.0, the values of non dimensional parameters of buckling load 

were 25.35, 6.61, 2.08, and 1.63 respectively. It was discovered that for aspect 

ratios of  0.2, 0.4, 0.8, the percentage differences between  the critical buckling 

load obtained from their study and those of Iyenger and Ibearugbulem are -

0.00394%, 4.3217%, -3.9352% and 37.2442%, 8.6043%, -14.6256% 

respectively.   
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Moreso, Ibearugbulem et al (2014), analyzed isotropic SSFS rectangular plate 

using polynomial shape function for buckling. Their result show that the 

percentage difference beween the critical buckling load in their work for aspect 

ratios of 0.5 and 1.0 and those of Timoshenko and Ibearugbulem, were -

2.9576%, -5.4079% and -8.7594%, -13.672% respectively. Eziefula et al. 

(2014), performed analysis on plastic buckling of an isotropic   C-SS-SS-SS 

plate under in-plane loading using Taylor’s series.  Ibearugbulem et al (2015), 

carried out inelastic stability analysis of uniaxially compressed flat rectangular 

isotropic CCSS plate. The results obtained compared favourably with the elastic 

stability values and percentage differences ranged from -0.353% to 7.427%. 

Therefore, they concluded that, the theoretical approach proposed in the study, 

is recommended for the inelastic stability analysis of thin flat rectangular 

isotropic plates under uniform in-plane compression.  

 

From all the results obtained, based on the use of Taylor Maclaurin’s 

formulated shape functions in energy equations, it is observed that the 

percentage differences between these results and those obtained by classical 

methods using trigonometric shape functions, are all within the acceptable limit 

in statistics, and that these results, are both lower and upper bound solutions in 

some case to those obtained by classical approaches. 

 

To further investigate the suitability of Taylor-Maclaurin’s formulated shape 

functions in plate analysis, Ezeh et al. (2014), performed stability analysis of 

orthotropic reinforce concrete shear wall using the new shape function. They 

results obtained, were very close to those obtained by the use of trigonometric 

shape functions. This further confirms the suitability of Taylor-Maclaurin’s or 

polynomial formulated shape functions for plate analysis. 
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This new approach, no doubt has reduced the stress of computation, but the 

approach is still time consuming to an extent. Hence, this work is concerned 

with the development of computer programs based on polynomial shape 

functions for easy and quick bending, vibrational and buckling analysis of thin 

rectangular plates. 

 

2.3  Free Vibration Analysis 

Free vibration of rectangular plate can be studied by specifying the boundary 

conditions of the plate. Szilard (2004) used single degree of freedom (DOF) 

system to analyze for the deflection of SSSS plate loaded uniformly and the 

results, obtained were comparable to Navier’s solution. He stated that, the 

undraped free flexural vibration of rectangular plates, are basically boundary 

value problems of mathematical physics. He also, used energy and numerical 

methods to obtained natural frequencies of thin rectangular plates.  In addition, 

he stated that, damping effects are caused either by internal friction or the 

surrounding media. He proceeded by saying that, although structural damping, 

is theoretically present in all plate vibrations, it has usually little or no effect on 

the natural frequencies and steady –state amplitudes.  

 

Also, Ventsel and Krauthammer, (2001) and Chakreverty (2009), who took 

classical and energy approaches, used trigonometric shape function to obtained 

natural frequency of SSSS and CCCC plates. According to Ventsel and 

Krauthammer, (2001), free vibration occurs in the absence of applied loads, but 

may be initiated by applying initial conditions to the plates. The free vibration 

deals with natural characteristics of the plates, and these natural vibrations occur 

at discrete frequencies, depending only on the geometry and material of the 

plates. They added that the most important part of the free flexural vibrations of 

plates, is to determine the natural frequencies and the mode shapes of the 

vibration associated with each natural frequency. Kanak and Abir (2013), 
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worked on free vibration of isotropic and composite rectangular plates, in which 

finite element formulation in ANSYS computer package, was used to analyze 

square plates of various boundary conditions (namely, SSSS, SSSC, SCSC, 

SCCC and CCCC) and different thickness ratios.   

 

These authors carried out their work based on the use of trigonometric shape 

functions, which are mostly assumed, and make the process of computation 

some how iterative in most cases; thereby making the computation more 

difficult for analysts involved in plate analysis. 

 

In view of these difficulties, and the quest to simplify free vibration of plate 

analysis, the use of polynomial formulated shape functions, have been 

investigated by some recent researchers. Among them are, Njoku et al. (2013), 

who considered free vibration analysis of an all-round fixed (i.e CCCC) thin 

rectangular isotropic plate using Taylor series based shape function in 

Galerkin's method. In doing so, he derived a peculiar shape function by 

applying the boundary conditions of the plate in Taylor series form of the 

equation, and substituted the initial result in Galerkin's functional to obtain the 

equation for the fundamental natural frequency of the free vibrating plate.   

 

The results obtained were compared with those of Chakreverty (2009), and they 

were very close.  He also, considered the following plates: plate simply 

supported  on all four edges (SSSS), plates with two adjacent clamped and the 

other two adjacent, simply supported (CCSS), plates with one edge clamped and 

other edges simply supported (CSSS), and plates with two opposite edges 

clamped and the other opposite edges simply supported (CSCS). From the 

results obtained, a maximum percentage difference of 0.0778%, was observed 

for SSSS plate for aspect ratio of 0.10, while that for CCCS plate was 0.409%.  
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Also, Ibearugbulem et al. (2012), performed vibration analysis of thin 

rectangular SSSS plate using Taylor-Maclaurin’s shape function. Soon after 

that, Ibearugbulem et al. (2013) carried out vibration analysis of CSSF and 

SSFC panel using same energy method. The percentage differences in the 

results obtained were minimal and within acceptable statistical limit.  They 

further carried out vibration analysis using finite difference methods for SSSS, 

CCCC, and CSCS plates.  From their results obtained, it was obvious that they 

were better with increased number of grid points. They concluded that, finite 

difference method (FDM) is a good numerical method for simplying thin plate 

analysis. 

 

Ezeh et al. (2014), carried out vibration analysis of a plate with one free edge 

using energy method. The Taylor–Maclaurin’s shape function derived was 

substituted in potential energy functional to obtain the fundamental natural 

frequency. Their study brought up a new relationship between fundamental 

natural frequency and aspect ratios. Also, they developed graphical models 

which can be used in place of the primary equations. Ebirim et al. (2014), 

further analyzed free vibration of isotropic rectangular plates (with CSCF and 

SCFC boundary conditions) using Taylor- Maclaurin's series. It is worth 

mentioning that, they results obtained based on these series, are satisfactory 

when compared with those of available literatures, the computational approach, 

is quite easier and simplified when compared with those based on trigonometric 

shape functions using classical methods. 

 

From the available literatures, none of these researchers who employed Taylor -

Maclaurin's series in the analysis of plates undergoing free vibration, develop or 

use computer program based on them, to analyze free vibration of thin 

rectangular plates. 
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2.4 Continuous Plates 

Floor slabs used in buildings and bridges, besides being supported by exterior 

walls, often have intermediate supports in the form of beams and partitions or 

columns. Floor slabs are usually sub-divided by their supports into several 

panels, either of equal or unequal panels. Continuous plates, are externally 

statically indeterminate. The classical methods used in the analysis of 

continuous plate fall into two distinct categories, namely force and deformation 

methods.  

 

Szilard (2004), noted that classical analysis of continuous plate, with the 

exception of the simplest cases, is quite cumbersome. He stated further that, 

numerical or engineering approaches, are used almost exclusively in the praxis 

to obtain usable approximate solutions of these important plate problems in an 

economical way.  Timoshenko and Woinowsky-Krieger (1959), observed that 

the application of the rigorous classical methods to the design of continuous 

plates or floor slabs, often, leads to cumbersome calculations and that the 

accuracy of results obtained, is illusory on account of many more or less 

indeterminable factors affecting the magnitude of the moments of the plate. 

These includes flexibility and the torsional rigidity of the supporting beams, the 

restraining effect of the surrounding walls, the anisotropy of the plate itself, and 

the accuracy in estimating the value of such constants as the Poisson ratio, v.  
 

Assuming the intermediate support as simply supported, Szilard (2004) used 

force method to analyze simply supported continuous plate in one direction (x -

direction). He performed this analysis based on trigonometric shape functions 

substituted in moment equations, and obtained the central moments at each 

panel. 
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Timoshenko and Woinowsky-Krieger (1959), analyzed simply supported 

continuous plates with intermediate beams and continuous plates without 

intermediate beams (that is flat slabs). They further considered approximate 

design of continuous plate with equal spans in two-directions.  On his own, 

Szilard (2004) analyzed only continuous plate with rigid intermediate supports 

(that is, plate with zero lateral deflections at the support) by assuming that the 

supports do not prevent rotations of the plate. Ventsel and Krauthammer (2001), 

studied a 3-span continuous plate simply supported using force method.  

 

In analysis of continuous plates, most efforts, have been on classical and 

approximate methods. Timoshenko and Woinowsky-Krieger (1959), stated that 

for classical method, the procedure of calculation, can be simplify by restricting 

the Fourier series representing bending moment in the plate to its initial term or 

by replacing the actual values of moments or slopes along some supports of the 

plate, with their average values or, finally, by use of a moment distribution 

procedure.  

 

Again, Szilard (2004) mentioned that, in continuous plate’ analysis spanning in 

two directions, application of the so-called ‘seven - moment equation’ derived 

by Galerkin, can be used, which he said, is valid for each intermediate edge. He 

further stated that, although it is theoretically possible to obtained close-form 

solutions for continuous plates in two-directions, the mathematical 

manipulations required, will become extensively prohibitive. He, therefore, 

recommended the application of   numerical approximations, such as finite 

element method, finite difference method etc, in continuous plate analysis, 

which he said offered a little simpler approach and valid practical results, and so 

it can be applied with computer easily to reduce stress of computation. 
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All these researchers used only trigonometric functions in their work; neither of 

them used polynomial shape functions nor wrote programs based on the 

polynomial formulated shape functions in the analysis of continuous plate.  

 

2.5  Computer Application in Plate Analysis 

 In fast advancing technology of twenty first century, where time has become a 

resource and with the increasing complexity of scientific and engineering 

problems, the use of computer has become indispensible in getting certain 

things done, and done timely. Several computer languages such as MATLAB, 

FORTRAN, C++, MINITAB etc have been developed to aid programming of 

problems.  

 

In plate analysis, some of these languages, have been used to developed 

programs for analysis of plate problems. For example, Szilard (2004) develops 

WINplate program software based on finite element method. SAP 2000 is also 

available for plate analysis based on trigonometric shape function. Also, 

MSC/NASTRAN which has been developed is based on trigonometric 

approach. The Dlubal Program Plate-Buckling, analyzed plate with or without 

stiffeners by successive eigenvalue calculation of the ideal buckling values for 

the individual plate stress condition as well as of buckling value for the 

simultaneous effectives of all stress components. 

 

Throughout this review, it is very obvious that there is limited information on 

programs written based on polynomial shape functions using MATLAB for 

analyzing isotropic continuous rectangular plates, so as to ease the stressful and 

time consuming effort of plate analysts. Hence, this work is timely and will be a 

leverage to all involved in plate analysis. 
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Matlab is an interactive working environment, in which the user can carry out 

numerous complex computational tasks with few commands. It is an acronym 

for Math’s Laboratories.  It offers a nice combination of handy programming 

features with powerful built-in numerical capabilities, and its M-files 

programming environment, allows for implementation of moderately 

complicated algorithms in a structured and coherent fashion, and can solve more 

difficult problems without trying to reinvent the wheels (Chapra, 2012).  Matlab 

is a high-level software package with many built-in functions that make the 

learning of numerical methods, much easier and more interesting (Yang et al., 

2005). 

 

Also, according to Wilson et al. (2003), Matlab embodies an interactive 

environment with a high-level programming language, supporting both 

numerical and graphical commands for two- and three - dimensional data 

analysis and presentation. He further said that, its (Matlab) wealth of intrinsic 

mathematical commands to handle matrix algebra, Fourier series, differential 

equations and complex-valued functions, and make simple calculator operations 

of many tasks previously requiring subroutine libraries with cumbersome 

argument lists, makes it an excellent alternative to languages such as 

FORTRANS or C++. 
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CHAPTER THREE 

METHODOLOGY  

3.1 Materials used 

The following materials were used to carry out this project work namely: 

 Deflected Shape functions 

 Total Potential Engergy Functionals 

 MATLAB Software 

3.2 Development of Computer Program 

The programs were developed with Matlab software based on some derived 

expressions using the deflected shape functions in Ritz energy equation. Hence, 

before proceeding into the development of the programs, it is important to first 

establish the theory and basic principles on which these programs will be based 

for clarity purpose. 

3.3 Single Panel Rectangular Isotropic Plate   

The shape function of each of the twelve (12) plate cases under consideration, 

were derived by assuming a deflected shape function (w) in form of Taylor-

Maclaurin's series for a plate subject to a uniformly distributed load, q(kN/m). 

The series was truncated at the fifth term. This deflection was consider in x- and 

y- directions using non-dimensional parameters R and Q (where R = x/a and Q 

= y/b). 

 

The shape function in terms of the non-dimensional parameter, R in x-direction 

is given by: 

wR = a0+a1R+a2R
2+a3R

3+a4R
4
       (3.1) 

where ao, a1, a2, …an are coefficients of the polynomial. 
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And for non-dimensional parameter, Q in y-direction, the deflected shape 
function, wQ

, is given as follows: 

wQ = b0+b1Q+b2Q
2+b3Q

3+b4Q
4       (3.2) 

Where bo, b1, b2, …bn are coefficients of the polynomial. 

Then, the different boundary conditions for each of the twelve plate cases were 

applied to Eqns (3.1) and (3.2) to obtain the values of the coefficients. 

Thereafter, the deflected shape function (w) for each plate was then obtained by 

multiplying Eqns (3.1) and (3.2). The product is in the form of Eqn (3.3). 

w = wR*wQ = A(c1R
f1-d1R

m1+e1R
n1) (c2Q

f2-d2Q
m2+e2Q

n2)   (3.3) 

where c1,c2,f
1,f2,d1,d2,m

1,m2,e1,e2 and n1,n2 are coefficient of the deflected shape 

function of each plate, whose values are 0.5, 1, 2, … as the case may be.  

And A, is the amplitude of deflection of the equation.  

Let ki = (c1R
f1-d1R

m1+e1R
n1)(c2Q

f2-d2Q
m2+e2Q

n2)    (3.4) 

Which is the shape function of each plate. 

If U = (c1R
f1-d1R

m1+e1R
n1)       (3.4a) 

And V = (c2Q
f2-d2Q

m2+e2Q
n2)       (3.4b) 

Then, ki = U*V         (3.4c) 

Therefore, w = Aki         (3.5) 

Table 3.1 shows the deflected shape functions for the twelve (12) plates. 
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Table 3.1 Formulated Polynomial Shape Functions  

S/N Types of 

Plates 

Plate 

Sketch 

Shape Function 

Wi = Aki
 

(where ki =k) 

Shape Parameter ki = U*V 

(where i = 1,2,3, ..., 12) 

1 SSSS  W =A k1 k1= (R-2R3+R4)(Q-2Q3+Q4) 

2 CCCC  W =A k2 K2 = (R2-2R3+R4)(Q2-2Q3+Q4) 

3 CSSS  W =A k3 K3= (R-2R3+R4)(1.5Q2-2.5Q3+Q4) 

4 CSCS  W =A k4 K4= (R-2R3+R4)(Q2-2Q3+Q4) 

5 CCSS  W =A k5 K5 = (1.5R2-2.5R3+R4)(1.5Q2-2.5Q3+Q4) 

6 CCCS  W =A k6 K6 = (1.5R2-2.5R3+R4)(Q2-2Q3+Q4) 

7 SSFS  W =A k7 K7 = (R-2R3+R4)( Q-  Q3+  Q4-Q5) 

8 SCFS  W =A k8 K8 = (1.5R2-2.5R3+R4)( Q-  Q3+  Q4-Q5) 

9 CSFS  W =A k9 K9 = (R-2R3+R4)(2.8Q2-5.2Q3+3.8Q4-Q5) 

10 CCFS  W =A k10 K10 = (1.5R2-2R3+R4)(2.8Q2-5.2Q3+3.8Q4-Q5) 

11 SCFC  W =A k11 k11 = (R2-2R3+R4)( Q-  Q3+  Q4-Q5) 

12 CCFC  W =A k12 k12= (R2-2R3+R4)(2.8Q2-5.2Q3+3.8Q4-Q5) 

where S-Simply supported edge; C- Clamped edge and F-Free edge 

 

3.3.1 Pure Bending Analysis 

The total potential energy functional, Π, of a rectangular plate subject to pure 

bending as given by Ibearugbulem (2012) and Ventsel et al. (2001), is as 

follows: 

Π = ∫∫ [  (w''R)2+ (w''RQ)2+(w''Q)2] ∂R∂Q-abq∫∫ w∂R∂Q  (3.6) 

where D = flexural rigidity of the plate,  

a and b are plate dimensions in x- and y- directions respective. 

P is aspect ratio a/b, and  

q is the applied uniformly distributed load. 
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And w''R =   ;     w''Q =    ; w''RQ = . 

In order to make Eqn (3.6) usable for this study, then Eqn (3.5) was substituted 

into Eqn (3.6) within integral 0 to 1, to obtain Eqn (3.7) 

Π =  A2∫∫ [ + (k''RQ)2+(k''Q)2] ∂R∂Q - abqA ∫∫ k∂R∂Q (3.7) 

where p = a/b,  and k = ki, k''R =   ;     k''Q =    ;  k''RQ =  

Minimizing Eqn (3.7)   and making A the subject of the formula yields 

   A =   *     (3.8) 

let up =      (3.9) 

Substituting Eqn (3.9) into Eqn (3.8) gives Eqn (3.10) 

 A = up*           (3.10) 

Hence, the deflection 'w' = Ak = up*  k      (3.11) 

The Eqn (3.11) is the general deflection expression for thin isotropic rectangular 

plate given in terms of aspect ratio, p = a/b. 

But if s = b/a = 1/p         (3.12) 

Then, substituting Eqn (3.12) into Eqn (3.8) , yields Eqn (3.13) 

  A =   *     (3.13) 

Let us =      (3.14) 

Substituting Eqn (3.14) into Eqn (3.13), yields Eqn (3.15) 
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A = us*           (3.15) 

Hence, the deflection for each plate is given by Eqn (3.16) 

w = us*  k          (3.16) 

Then, w = α          (3.17) 

where α = us* k, and up and us are the amplitude coefficients given in terms of 

aspect ratios, p and s respectively. 

The Eqn (3.16) or (3.17) is the general deflection expression for thin isotropic 

rectangular plate given in terms of aspect ratio s = b/a. 

But, the moment, M, at the mid span of each plate, was obtained from the 

following equations: 

Mx = -D(   + v   )        (3.18) 

My = -D( v   +   )        (3.19) 

Substituting for x and y in terms of non-dimensional parameters, R = y/a and Q 

= y/b into Eqns (3.18) and (3.19), yields Eqns (3.20) and (3.21) respectively 

Mx = -D( +v )        (3.20) 

My = -D( v   +   )       (3.21) 

Substituting Eqns (3.5) and (3.15) into Eqns (3.20) and (3.21), gives Eqns (3.22) 

and (3.23) respectively. 
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Mx =  -usqa2(   + v   )       (3.22) 

My = -usqa2(v   +     )       (3.23) 

let β =  -us(   + v     )       (3.24) 

And β1  = -us(v   +     )       (3.25) 

Substituting Eqn (3.24) into Eqn (3.22), and Eqn (3.25) into Eqn (3.23), yields 

respectively; 

Mx = β           (3.26) 

My = β1            (3.27) 

The shear force in x- and y- directions, were obtained fromthe following Eqns 

(3.28) and (3.29) 

Vx = -D[   +(2-v)   ]       (3.28) 

Vy = -D[   +   (2-v)  ]       (3.29) 

Substituting for x and y in terms of non-dimensional parameters, R = x/a and Q 

= y/b into Eqns (3.28) and (3.29), yields Eqns (3.30) and (3.31) respectively 

Vx = -D[   +(2-v)   ]      (3.30) 

Vy = -D[   +   (2-v) ]      (3.31) 

Substituting Eqns (3.5) and (3.15) into Eqns (3.30) and (3.31), gives Eqns (3.32) 

and (3.33) respectively 
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Vx = -usqa[   + (2-v)   ]      (3.32) 

Vy = -usqa [ + (2-v)  ]      (3.33) 

Let δ =  -us[   + (2-v)   ]      (3.34) 

And δ1 =-us[   +  (2-v)  ]      (3.35) 

Therefore, by substituting Eqn (3.34) into Eqn (3.32) and Eqn (3.35) into Eqn 

(3.33), the expressions for shear force in the x- and y- directions gives Eqn 

(3.36) and Eqn (3,37) repectively: 

Vx = δqa          (3.36) 

Vy = δ1qa          (3.37) 

Based on the derived equations, programs were developed for pure bending 

analysis in section 3.5. 

3.3.2 Buckling/Stability Analysis 

Ibearugbulem (2011) gave the total potential energy functional, Πx, for a 

rectangular thin isotropic plate subject to in-plane load in x-direction as: 

Πx =  ∫∫ [  (w''R)2+ (w''RQ)2+ (w''Q)2] ∂R∂Q-  ∫∫ (w'R)2∂R∂Q (3.38)  

where Nx is the critical buckling load of the plate, and all other parameters 

retain the same meaning as in section 3.1.1. 

For aspect ratio, s = b/a, Eqn (38) becomes Eqn (3.39) 

Πx =  ∫∫ [s(w''R)2+  (w''RQ)2+  (w''Q)2] ∂R∂Q-   ∫∫ s(w'R)2∂R∂Q (3.39) 
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Modifying Eqn (3.39) to make it usable in developing the program, requires 

substituting Eqn (3.5) into Eqn (3.35), to obtained Eqn (3.40) 

Πx =  ∫∫ [s(k''R)2+  (k''RQ)2+  (k''Q)2] ∂R∂Q-   ∫∫ s(k'R)2∂R∂Q (3.40) 

Minimizing Eqn (3.40) and making, Nx the subject of the formula, gives: 

Nx =       (3.41) 

The Eqn (3.41) can be rewritten as Eqn (3.42) 

Nx =  *      (3.42) 

Let nx =      (3.43) 

Therefore, Nx = nx         (3.44) 

 where, nx, is the critical buckling factor or coefficient in x- direction. 

The Eqn (3.42) or Eqn (3.44) is the general critical buckling load expression for 

thin isotropic rectangular plate with aspect ratio s = b/a. 

Programs based on Eqns (3.42) and (3.44) were developed for stability or 

buckling analysis in section 3.5. 

 

3.3.3 Free Vibration Analysis 

The total potential energy functional, Π, for free vibration of rectangular 

Isotropic plate using Ritz method as given by Ibearugbulem (2013) , is as 

follows: 

Π =  ∫∫ [  (w''R)2+  (w''RQ)2+ p(w''Q)2]∂R∂Q-pρhω2b2∫∫ w2 ∂R∂Q (3.45) 
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where ρ is the specific density of the plate, and ω is the fundamental natural 

frequency or the resonating frequency of the vibrating plate. 

Substituting w = Ak, (i.e Eqn 3.5), into Eqn (3.45), yields: 

Π =  ∫∫ [  (k''R)2+  (k''RQ)2+ p(k''Q)2] ∂R∂Q-pρhω2b2A2∫∫ k2 ∂R∂Q (3.46) 

Minimizing Eqn (3.46) and making 'ω2' the subject of the equation, gives Eqn 

(3.47) 

ω2 =  *     (3.47) 

Let 2=      (3.48) 

Therefore, ω2 = ƒp
2 *         (3.49) 

Hence, ω =          (3.50) 

The Eqns (3.47) or (3.50) is the general expression for the fundamental natural 

frequency of a thin isotropic rectangular plate with aspect ratio, p = a/b. 

For aspect ratio s = b/a, the Eqn (3.47), becomes: 

ω2 =  *      (3.51) 

Let   2 =      (3.52) 

 = [ ]1/2    (3.53) 

From Eqn (3.51), the square of the fundamental frequency, ω2, becomes 
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 ω2 =  2         (3.54) 

Hence, ω =          (3.55) 

where,   is the coefficient of free vibration. 

The Eqns (3.51) or (3.55) is the general expression for the fundamental natural 

frequency of a thin isotropic rectangular plate with aspect ratio, s = b/a. 

Programs based on Eqns (3.53) and (3.55) are develop for free vibration 

analysis in section 3.5.  

 

3.4 Continuous Plate 

In this section of work, two types of continuous thin plates were analyzed, 

namely, continuous plate spanning in one way, and continuous plate spanning in 

two ways.  

3.4.1 One-Way Continuous thin Plate  

The one-way continuous thin plate is assumed to be simply supported at the 

outer edges and fixed along the internal edges. It is shown in Fig.3.1 

                     R 

x            x 

b 

      a            a                          a                          a  

 Q    Assume a = b 

Fig 3.1: A Continuous plates spanning in one way 

 

 SSSC            SCSC                  SCSC                 SCSS 
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The continuous plate was divided into four panels of single rectangular plates, 

show in fig 3.1. Assuming the panels are symmetrical and have equal span 

length, a. The aspect ratio, (s= b/a), which is equal to unity, and the boundary 

conditions of each plate panel are substituted into the following version of Eqns 

(3.26) and (3.27);  

FEM = βg ,  

where g = R(x) or Q(y) 

 The expression is used to compute the values of the fixed edge or end moments 

(i.e FEMs) of each individual plate panel presented in Fig 3.2 and Table 4.23. 
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Fig. 3.2: One-way continuous plate showing fixed end moments of each panel. 

Using beam analogy, a section x-x is taken through the center of each panel of 

the continuous plate as shown in Fig. 3.1, and represented as Fig. 3.3 for 

continuous plate in in one direction. It was analyzed by the use of stiffness 

method to obtain the support and span moments as follows: 

      q(kN/m) 

   

  A    B          C     D   E 

     (1)  a  (2)   a      (3)  a  (4) a  

EI = CONSTANT 
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Fig 3.3a: Section x-x of the continuous plate in spanning one way  

The rotations, Φ, at the supports due to the applied load are shown in Fig. 3.3b. 

 

 

  ΦA    ΦB         ΦC  ΦD        ΦE 

  

         A     B           C                     D                       E  

     (1)    a  (2)   a               (3) a  (4) a  

Fig 3.3b: Rotations at the supports of section x-x of the continuous beam.  

The beam element stiffness, ke, of the various spans (elements), are as presented 

below in a matrix form as follows: 

For the first span (element), AB, having the length ‘a’, the stiffness, ke1 is given 

by Eqn (3.56): 

ke1 = 
4EI/L1 2EI/L1 

   = EI/a 
4 2 

  (3.56) 
2EI/L1 4EI/L1 2 4 

  
 
Similarly, for the second span (element), BC, having the length ‘a’, the 
stiffness, ke2 is given as Eqn (3.57): 
 

ke2 = 
4EI/L2 2EI/L2 

   = EI/a 
4 2 

  (3.57) 
2EI/L2 4EI/L2 2 4 

  
 
Also, for the third span (element), CD, having the length ‘a’, the stiffness, ke3 is 

given by Eqn (3.58): 

ke3 = 4EI/L3 2EI/L3    = EI/a 4 2 
  

(3.58) 
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2EI/L3 4EI/L3 2 4 
  

 

For the fourth span (element), DE, having the length ‘a’, the stiffness, ke4 is 

given by Eqn (3.59): 

 

ke4 = 
4EI/L4 2EI/L4 

   = EI/a 
4 2 

  (3.59) 
2EI/L4 4EI/L4 2 4 

  
 

Now, assemblage of the individual element stiffness matrices of Eqns (3.56), 

(3.57), (3.58), and (3.59) into a global or structural stiffness matrix, K, of the 

entire plate, yields Eqn (3.60) 
 

  4 2 0 0 0    

  2 8 2 0 0    

K= EI/a 0 2 8 2 0   (3.60) 

  0 0 2 8 2    

  0 0 0 2 4    
 

From Fig. 3.2, the fixed end moments (FEM) for the various supports are as 

follows: 

FEMAB = FEMED = -0kNm;  

FEMBA =FEMDE = -0.067599qa2kNm;  

FEMBC=FEMCB=FEMCD=FEMDC = -0.063626qa2kNm;  

Arranging the FEMs in matrix form, yields   Eqn (3.61) 

FEMAB  0.00000 qa2     
FEMBA  -0.06760 qa2     
FEMBC  -0.06363 qa2     
FEMCB = -0.06363 qa2    (3.61) 
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FEMCD  -0.06363 qa2     
FEMDC  -0.06363 qa2     
FEMDE  -0.06760 qa2     
FEMED  0.00000 qa2     
 
After factoring qa2 out, Eqn (3.61) becomes 
 
 
 

FEMAB  0.00000  
     

FEMBA 
 -0.06760       

FEMBC 
 -0.06363  

     

FEMCB = qa2 -0.06363  
    (3.62) 

FEMCD 
 -0.06363  

     

FEMDC 
 -0.06363  

     

FEMDE 
 -0.06760  

     

FEMED 
 0.00000       

 
The final fixed end moment at each support, is given by Eqn (3.63) 
 
FEMA  0  0.00000   

FEMB  -0.067599+0.063626  -0.00397   

FEMC =     qa2 -0.063626+0.063626 = qa2 0.00000  (3.63) 

FEMD  -0.063626+0.067599  0.00397   

FEME  0  0.00000   

 

But, in stiffness method of analysis, applied load or reaction is proportional the 

displacement cause by that reaction. Hence,   

F α Δ          (3.64a) 

F = k Δ         (3.64b) 

where, Δ is displacement  

Representing Eqn (3.64b) in a matrix form, and after introducing a 

proportionality constant, K (i.e stiffness), gives Eqn (3.65), 

  FEM  = K . Δ   (3.65) 
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Substituting Eqns (3.60) and (3.63) into Eqn (3.65), yields Eqn (3.66) 

where the unknown displacements, Δ is given by 

 

Transposing Eqn (3.66)   and obtaining the inverse of the stiffness matrix, K, 

yields Eqn (3.68). 

ΦA  0.28869 -0.07738 0.020833 -0.00595 0.002976  0.00000    
ΦB  -0.07738 0.154762 -0.04167 0.011905 -0.00595  -0.00397    
ΦC =a/EI 0.020833 -0.04167 0.145833 -0.04167 0.020833 * 0.00000 qa2  (3.68) 
ΦD  -0.00595 0.011905 -0.04167 0.154762 -0.07738  0.00397    
ΦE  0.002976 -0.00595 0.020833 -0.07738 0.28869  0.00000    
 

Executing the matrix multiplication of the RHS of Eqn (3.68), gives the 

displacements at the supports as follows: 

ΦA  0.000284   
ΦB  -0.00057   
ΦC =qa3/EI 0.00000   (3.69) 
ΦD  0.000567   
ΦE  -0.00028   

 

To obtain the member or element forces, MF,substitute the stiffness of each 

element [i.e Eqns (3.56), (3.57),  (3.58),  and (3.59)] and member displacements 

0.00000  
4 2 

 
0 0 0 

 ΦA   

-0.00397  
2 8 

 
2 0 0 

 ΦB   

0.00000 =  EI/a 
0 2 

 
8 2 0 

* ΦC  (3.66) 

0.00397  
0 0 

 
2 8 2 

 ΦD   

0.00000  
0 0 

 
0 2 4 

 ΦE   

  ΦA    

  ΦB    

Δ = ΦC   (3.67) 
  ΦD    
  ΦE    
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of Eqn (3.69) into Eqn (3.70), which is a modified expression of Eqn (3.65) , 

and carrying out matrix multiplication, gives Eqns (3.71) to (3.74). 

 

For member/element AB  

MFA 
 =  EI/a 

4 2 
* qa3/EI 

0.000284 
= qa2 

0 
 (3.71) 

MFB 2 4 -0.00057 -0.0017 
 

 

For member/element BC  

MFB 
 =  EI/a 

4 2 
* qa3/EI 

-0.00057 
= qa2 

-0.00227 
 (3.72) 

MFC 2 4 0.00000 -0.00113 
 

 

For member/element CD  

MFC 
 =  EI/a 

4 2 
* qa3/EI 

-0.00000 
= qa2 

0.001134 
 (3.73) 

MFD 2 4 0.000567 0.002269 
 

   

For member/element DE  

MFD 
 =  EI/a 

4 2 
* qa3/EI 

0.000567 
= qa2 

0.001701 
 (3.74) 

MFE 2 4 -0.00028 0.00000 
 

 

To obtain the final support moments, M, at each support of the continuous plate, 

the values of the member or element end forces or reactions, MF, at each 

support of that element is subtracted from the fixed end moments at the supports 

given by Eqn (3.75). 

 
For member/element AB, 
 
MAB 

=   qa2 
0.0000 

- qa2 
0.0000 

=   qa2 
0.0000 

kNm  (3.76) 
MBA -0.0676 -0.0017 -0.0659  

 

 MF   = ke . Φe   (3.70) 

 M   = FEM - MF   (3.75) 
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For member/element BC, 

MBC 
=   qa2 

-0.06363 
- qa2 

-0.00227 
=   qa2 

-0.06136 
kNm  (3.77) 

MCB -0.06363 -0.00113 -0.06250 
 

 

For member/element CD, 

MCD 
=   qa2 

-0.06363 
- qa2 

0.001134 
=   qa2 

-0.06476 
kNm  (3.78) 

MDC -0.06363 0.002269 -0.06590 
 

 

For member/element DE, 

MDE 
=   qa2 

-0.06760 
- qa2 

-0.001701 
=   qa2 

-0.06930 
kNm  (3.79) 

MED 0.00000 0.00000 0.00000 
 

 

Therefore, the final support moments are as shown in Eqn (3.80) as follows: 

MAB 
 0.00000       

MBA 
 -0.06950  

     

MBC 
 -0.06136  

     

MCB = qa2 -0.06250 kNm 
    (3.80) 

MCD 
 -0.06476  

     

MDC 
 -0.06590  

     

MDE 
 -0.06930       

MED 
 0.00000  

     

 

To obtain the span moment, Mspan, we use the expression in Eqn (3.81), which is 

based on the assumption that each of the spans is consider simply supported. 

Then, the static span moment of each span minus the average of the two 

supports moments of that element/member. 

Mspan = 0.125qa2 - 0.5(MYZ+MZY)qa2
 (3.81)  

Where, y and z represent the supports of that span/element. 
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Therefore, substituting the values of the final support moments given by Eqn 

(3.80) into Eqn (3.81), yields the following results: 

Mspan(1) = 0.0932qa2kNm (3.81a) 

Mspan(2) = 0.06137qa2kNm (3.81b) 

Mspan(3) = 0.05939qa2kNm         (3.81c) 

Mspan(4) = 0.0912qa2kNm         (3.81d) 

The discussions on these results are done in chapter four of this work. The 

bending moment diagram is plotted as shown in Fig. 3.4.  

                           0.06363qa2            0.06363qa2          0.06760qa2 

      a/2 a/2             a/2          a/2            a/2         a/2            a/2  a/2  

A                               B                            C                          D                         E 

 

  0.09319qa2  0.06137qa2  0.05939qa2  0.09120qa2 

Fig.3.4: Section x-x BMD (kNm) for one-way continuous plate 

 

3.4.2 Two-Way Continuous Plate  

In this section, a continuous plate in two ways was analyzed in both x- and y- 
directions. In other to carry out the analysis with ease, the continuous plate was 
divided into twelve single panels in both ways forming three continuous strips 
in x- direction and four continuous strips in y- direction as shown in Fig. 3.5.  
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     1   2          2   1   

  
   S           SR 
b 

 

b T            T 

 

   S 
b            S 

    Assuming a = b 

                 1               2             2           1 
    Q          a        a     a   a  

Fig. 3.5: Two-Way continuous plate  

Considering the symmetry of the beam, with each single panel being a square 

plate having a dimension ‘a’ along x-direction, dimension ‘b’ along y- direction. 

The aspect ratio, b/a, is unity. Assumme the outer edges of the continuous plate 

to be simply supported and the internal edges to be fixed. The fixed edge 

moments of each single panel were obtained by substituting the boundary 

conditions of each individual plate into Eqns (3.26) and (3.27) hereby 

                (K)           (L)        (M)     (N) 

 CSSC                CCSC      CCSC                 CCSS 

                (E)            (F)       (I)   (J) 

 CSCC              CCCC                  CCCC                 CCCS 

                (A)        (B)        (C)   (D) 
  

 SSSC            SCCC                  SCCC                 SCCS 
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represented generally as, FEM = βg , where g = R(x) - or Q(x) -direction.The 

values of the coefficients, βg, of the fixed edge moments for the individual 

panels are presented in Fig. 3.6 and Tables 4.24– 4.27. 
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Fig.3.6: Fixed End Moments of a two- way continuous plate. 

 

In a similar manner, beam analogy was used to analyze for the supports and 

span moment of the plate. In doing so, sections like: S-S, T-T, 1-1, and 2-2 were 

taken through the center of each strip as shown in fig. 3.5.  Thereafter, element 

stiffness method is use in the analysis of the two-way continuous plate. 

 

For the S-S section shown in fig. 3.7a, the support and span moments are 

analysed as follows: 
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     q(kN/m) 

   

     (1) a  (2) a               (3) a  (4) a  

EI = Constant 
Fig 3.7a: Section S-S of the continuous plate.  
  
The rotations at the supports due to the applied load are shown in fig. 3.7b. 

  ΦA    ΦB         ΦC     ΦD      ΦE 

  A            B                      C                       D                        E 

     (1)   a  (2)  a               (3)    a  (4) a  

Fig 3.7b: Rotations at the supports section S –S of the continuous plate. 

It was assume that the spans are equal, i.e, AB = BC =CD =DE and the aspect 

ratio, s = b/a = 1.  

The beam element stiffness, ke, of the various spans (elements) are as presented 

below in matrix form as follows: 

For the first span (element), AB, having the length ‘a’, the stiffness, ke1, is given 

by Eqn (3.82): 

ke1 = 
4EI/L1 2EI/L1 

= EI/a 
4 2 

  (3.82) 
2EI/L1 4EI/L1 2 4 

  
 

Similarly, for the second span (element), BC, having the length ‘a’, the 
stiffness, ke2, is given by Eqn (3.83): 
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ke3 = 
4EI/L2 2EI/L2 

= EI/a 
4 2 

  (3.83) 
2EI/L2 4EI/L2 2 4 

  
 

Also, for the third span (element), CD, having the length ‘a’, the stiffness, ke3, is 

given by Eqn (3.84): 

ke3 = 
4EI/L3 2EI/L3 

= EI/a 
4 2 

  (3.84) 
2EI/L3 4EI/L3 2 4 

  
 

For the forth span (element), DE, having the length ‘a’, the stiffness,  ke4, is 

given by Eqn (3.85): 

ke4 = 
4EI/L4 2EI/L4 

= EI/a 
4 2 

  (3.85) 
2EI/L4 4EI/L4 2 4 

  
 

Now, combining all the individual element stiffness matrices of Eqns (3.82)- 

(3.85) into a global or structural stiffness matrix, K, of the entire section of the 

plate,  gives Eqn (3.86). 
 

  4 2 0 0 0    

  2 8 2 0 0    

K= EI/a 0 2 8 2 0   (3.86) 

  0 0 2 8 2    

  0 0 0 2 4    
 

From Fig. 3.7a, the fixed end moments, (FEM) for the various supports, are as 

follows: 

FEMAB = FEMED = -0kNm;  

FEMBA =FEMDE = -0.05042qa2kNm;  

FEMBC=FEMCB=FEMCD=FEMDC = -0.05142qa2kNm;  

Representing the FEMs in matrix form, yields Eqn (3.87) 
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FEMAB  0.00000 qa2     
FEMBA  -0.05042 qa2     
FEMBC  -0.05142 qa2     
FEMCB = -0.05142 qa2    (3.87) 
FEMCD  -0.05142 qa2     
FEMDC  -0.05142 qa2     
FEMDE  -0.05042 qa2     
FEMED  0.00000 qa2     
 

And factoring qa2 out, Eqn (3.87) becomes Eqn (3.88) 

FEMAB  0.00000  
     

FEMBA 
 -0.05042  

     

FEMBC 
 -0.05142  

     

FEMCB = qa2 -0.05142  
    (3.88) 

FEMCD 
 -0.05142       

FEMDC 
 -0.05142  

     

FEMDE 
 -0.05042  

     

FEMED 
 0.00000  

     

 

Thus, the final fixed end moment in each support, is obtained by summing up 

moment at each support. 

FEMA  0  0.00000   

FEMB  -0.05042+0.05142  0.001   

FEMC =     qa2 -0.05142+0.05142 =  qa2 0.00000  (3.89) 

FEMD  -0.05142+0.05142  -0.001   

FEME  0  0.00000   
 

It will be recalled that, in stiffness method of analysis, applied reaction or load 

is proportional to the displacement caused by that reaction (See Eqn (3.65) 

Substituting Eqns (3.86) and (3.89) into Eqn (3.65), yields Eqn (3.90) 
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where the unknown displacements, Δ, is given by Eqn (3.91) 

 

Transposing Eqn (3.90) in order to obtain the displacements, Δ, yields Eqn 

(3.92), after the inverse of the stiffness matrix, K, has been determined. 

ΦA  0.28869 -0.07738 0.020833 -0.00595 0.002976  0.00000    
ΦB  -0.07738 0.154762 -0.04167 0.011905 -0.00595  0.001    
ΦC =a/EI 0.020833 -0.04167 0.145833 -0.04167 0.020833 * 0.00000 qa2  (3.92) 
ΦD  -0.00595 0.011905 -0.04167 0.154762 -0.07738  -0.001    
ΦE  0.002976 -0.00595 0.020833 -0.07738 0.28869  0.00000    
 

Simplifying the Eqn (3.92), gives Eqn (3.93) 

ΦA  -0.00007   
ΦB  0.000143   
ΦC =qa3/EI 0.00000  (3.93) 
ΦD  -0.00014   
ΦE  0.00007   
 

To obtain the member or element reactions, MF, substitute respectively the 

stiffness of each element [i.e Eqns (3.82), (3.83), (3.84), and (3.85)], and the 

member displacement given by Eqn (3.93) into Eqn (3.70). These yields Eqns 

(3.94) -(3.97) respectively. 

0.00000  
4 2 

 
0 0 0 

 ΦA   

0.001  
2 8 

 
2 0 0 

 ΦB   

0.00000 =EI/a 
0 2 

 
8 2 0 

* ΦC  (3.90) 

-0.001  
0 0 

 
2 8 2 

 ΦD   

0.00000  
0 0 

 
0 2 4 

 ΦE   

  ΦA    

  ΦB    

Δ = ΦC   (3.91) 
  ΦD    
  ΦE    
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For member/element AB , the reactions, MF, are as follows: 

MFA 
= EI/a 

4 2 
* qa3/EI 

-0.00007 
= qa2 

0 
 (3.94) 

MFB 2 4 0.00014 0.00429 
 

 

For member/element BC, the reactions, MF, are given by Eqn (3.95)   

MFB 
= EI/a 

4 2 
* qa3/EI 

0.000143 
= qa2 

0.000571 
 (3.95) 

MFC 2 4 0.00000 0.000286 
 

 

For member/element CD  

MFC 
= EI/a 

4 2 
* qa3/EI 

0.00000 
= qa2 

-0.00029 
 (3.96) 

MFD 2 4 -0.00014 -0.0057 
  

For member/element DE  

MFD 
= EI/a 

4 2 
* qa3/EI 

-0.00014 
= qa2 

-0.00043 
 (3.97) 

MFE 2 4 0.00007 0.00000 
 

 

To obtain the final support moments, M, at each support, the values of the 

member or element forces or reactions, MF, at each support of that element are 

subtracted from the fixed end moments at the supports in question using Eqn 

(3.75). 

For member/element AB, the final support moment is obtained using Eqn (3.98) 

MAB 
=   qa2 

0 
- qa2 

0 
=   qa2 

0 
kNm  (3.98) 

MBA -0.05 0.0004 -0.05085 
  

For member/element BC, the final support moment is calculated as follows 

MBC 
=   qa2 

-0.05142 
- qa2 

0.000571 
=   qa2 

-0.05199 
kNm  (3.99) 

MCB -0.05142 0.000286 -0.05171 
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For member/Element CD, 

MCD 
=   qa2 

-0.05142 
- qa2 

-0.00029 
=   qa2 

-0.05113 
kNm  (3.100) 

MDC -0.05142 -0.00057 -0.05085 
 

 

For member/Element DE, 

MDE 
=   qa2 

-0.05042 
- qa2 

-0.00043 
=   qa2 

-0.04999 kN
m 

 (3.101) 
MED -0.00000 0.00000 0.00000  

 

Therefore, the final support moments are as follows: 

MAB 
 0.00000       

MBA 
 -0.05085  

     

MBC 
 -0.05199  

     

MCB = qa2 -0.05171 kNm 
    (3.102) 

MCD 
 -0.05113  

     

MDC 
 -0.05085  

     

MDE 
 -0.04999  

     

MED 
 0.00000  

     

 

To obtain the span moment, Mspan, use the expression Eqn (3.81), which is 

based on the assumption that each of the spans, is consider simply supported. 

The span moment, Mspan, is equal to the static span moment of each span 

minus the average of the two supports moments of that element/member. Thus, 

Mspan = 0.125qa2 - 0.5(MYZ+MZY)qa2 (3.81) (3.103) 

Substituting the values of the final support moments in Eqn (3.102) into Eqn 

(3.81), yields the following results: 

Mspan(1) = 0.09929qa2  kNm (3.104) 

Mspan(2) = 0.07358qa2 kNm (3.105) 
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Mspan(3) = 0.07408qa2 kNm          (3.106) 

Mspan(4) = 0.09979qa2kNm    (3.107) 

The bending moment diagram is plotted as shown in Fig. 3.8. 

                           0.05142qa2                 0.05142qa2                    0.05042qa2 

        a/2         a/2             a/2         a/2            a/2          a/2          a/2           a/2  

A                            B                            C                           D                                E 

 

    0.09929qa2  0.07358qa2  0.07408qa2  0.09979qa2 

Fig.3.8: Bending Moment Diagram at Section S-S BMD of a two-way 

continuous plate 

 

For Section T-T of the two-way continuous plate, the following results or 

values, were obtained using the same procedure: 

Fixed end moments at the ends of the elements are given by Eqn (3.108) 

FEMAB  0.00000  
     

FEMBA 
 -0.03856  

     

FEMBC 
 -0.04252  

     

FEMCB = qa2 -0.04252  
    (3.108) 

FEMCD 
 -0.04252       

FEMDC 
 -0.04252  

     

FEMDE 
 -0.03856  

     

FEMED 
 0.00000  

     
 

The final fixed end moment in each support is given Eqn (3.109) as 
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FEMA  0  0.00000   

FEMB  -0.03856+0.04252  0.00396   

FEMC =     qa2 -0.04252+0.04252 =  qa2 0.00000  (3.109) 

FEMD  -0.04252+0.03856  -0.00396   

FEME  0  0.00000   
 

The displacements at the supports are given by Eqn (3.110): 

ΦA  0.00028   
ΦB  0.000566   
ΦC =qa3/EI 0.00000  (3.110) 
ΦD  0.00057   
ΦE  -0.00028   
 

The member or element reactions or forces, MF, are calculated as follows: 

For member/element AB, the end reactions are given by Eqn (3.111)  

MFA 
= EI/a 

4 2 * qa3/EI 0.00028 =   qa2 0.0000 
 

(3.111) 

MFB 2 4 
  

0.000566 
 

0.0017 
  

 

For member/element BC, the reactions at the ends, are as follows: 

MFB 
= EI/a 

4 2 
* qa3/EI 

0.000566 
=   qa2 

0.00226 
 (3.112) 

MFC 2 4 0.00000 0.00113 
  

For member/element CD, member end forces can be determined using Eqn 

(3.113)  

MFC 
= EI/a 

4 2 
* qa3/EI 

0.00000 
=   qa2 

-0.00113 
 (3.113) 

MFD 2 4 -0.000567 -0.00227 
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For member/element DE,  

MFD 
= EI/a 

4 2 
* qa3/EI 

0.000567 
=   qa2 

-0.00170 
 (3.114) 

MFE 2 4 -0.00028 0.00000 
  

The final support moments at each support are obtained as follows: 

For member/element AB, the final support is obtained using Eqn (3.115)  

MAB 
= qa2 

0.00000 
- qa2 

0.00000 
=   qa2 

0.00000 
kNm  (3.115) 

MBA -0.03856 0.0017 -0.04026  
 

For member/element BC, the final support moment is calculated as follows 

MBC 
= qa2 

-0.04252 
- qa2 

0.00226 
=   qa2 

-0.04478 
kNm  (3.116) 

MCB -0.04252 0.00113 -0.04365 
 

 

For member/Element CD, 

MCD 
= qa2 

-0.04252 
- qa2 

-0.001134 
=   qa2 

-0.04139 
kNm  (3.117) 

MDC -0.04252 -0.002269 -0.04024 
 

 

For member/Element DE, 

MDE 
= qa2 

-0.03856 
- qa2 

-0.00170 
=   qa2 

-0.03686 
kNm  (3.118) 

MED 0.00000 0.00000 0.00000  
 

The final support moments are given by Eqn (3.119) as follows: 

MAB 
 0.00000  

     

MBA 
 -0.04026       

MBC 
 -0.04478  

     

MCB = qa2 -0.04365 kNm 
    (3.119) 

MCD 
 -0.04139  

     

MDC 
 -0.04024  
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MDE 
 -0.03686  

     

MED 
 0.00000  

     

The span moments, Mspan, are given as follows:  

Mspan(1) = 0.10374qa2  kNm (3.120) 

Mspan(2) = 0.08248qa2 kNm (3.121) 

Mspan(3) = 0.08447qa2 kNm         (3.122) 

Mspan(4) = 0.10573qa2kNm         (3.123) 

The bending moment diagram is plotted as shown in fig.3.9. 

                           0.04252qa2             0.04252qa2            0.03855qa2 

         a/2         a/2          a/2         a/2            a/2           a/2           a/2              a/2 

 

A                               B                            C                            D                          E 

  0.10374qa2  0.08248qa2  0.08447qa2  0.10573qa2 

Fig.3.9: Bending Moment Diagram of Section T-T of two- way continuous plate 

 

Considering the y-direction of the continuous plate, the first strip, section 1-1 is 

represented below: 

    q(kN/m) 

  A                      B                        C                       D 

(1)   b  (2)   b                (3)   b      

Fig 3.10a: Section 1-1 of the continuous plate   

The rotations at the support due to applied load are shown in fig. 3.10b 
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  ΦA    ΦB         ΦC        ΦD    

  A                       B                        C                       D 

(1)   b  (2)   b               (3)     b     

Fig 3.10b: Rotations at the supports of Section 1-1 of the continuous plate 

Assume the spans are equal i.e AB = BC =CD =DE and the aspect ratio, s = b/a 

= 1.  

The beam element stiffness, ke of the various spans (elements) are as presented 

in the matrix form as follows: 

For the first span (element), AB, having the length ‘a’, the stiffness, ke1 is given 

by Eqn (3.124): 

ke1  = 
4EI/L1 2EI/L1 

=  EI/b 
4 2 

  (3.124) 
2EI/L1 4EI/L1 2 4 

  
 

In a similarly way, for the second span (element), BC, having the length ‘a’, the 
stiffness, ke2, is given as Eqn (3.125): 

ke2  = 
4EI/L2 2EI/L2 

=  EI/b 
4 2 

  (3.125) 
2EI/L2 4EI/L2 2 4 

  
 

Also, for the third span (element), CD, with length ‘a’, the stiffness, ke3, is given 

by Eqn (3.126): 

ke3  = 
4EI/L3 2EI/L3 

=  EI/b 
4 2 

  (3.126) 
2EI/L3 4EI/L3 2 4 
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Now, assembling the individual element stiffness matrices of Eqns (3.124) -

(3.126), into a global or structural stiffness matrix, K, of the entire section of the 

plate, yields Eqn (3.127) 

  4 2 0 0    

K= EI/b 2 8 2 0    

  0 2 8 2   (3.127) 

  0 0 2 4    

 

From Fig. 3.10a, the fixed end moments, (FEM) for the various supports, are as 

follows: 

FEMAB = FEMCD = -0kNm;  

FEMBA =FEMCD = -0.05042qb2kNm;  

FEMBC=FEMCB= -0.05142qb2kNm;  

Representing the FEMs in a matrix form, yields Eqn (3.128) 

FEMAB  0.00000 qb2     
FEMBA  -0.05042 qb2     
FEMBC  -0.05142 qb2    (3.128) 
FEMCB = -0.05142 qb2     
FEMCD  -0.05042 qb2     
FEMDC  0.00000 qb2     
 

And factoring qb2 out, Eqn (3.128) becomes Eqn (3.129) 

FEMAB  0.00000       

FEMBA 
 -0.05042  

     

FEMBC = qb2 -0.05142       

FEMCB 
 -0.05142  

    (3.129) 

FEMCD 
 -0.05042  

     

FEMDC 
 0.00000  
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The final fixed end moment in each support, obtained by summing up moment 
at each support, is given by Eqn (3.130) 

 

 

FEMA  0  0.000   

FEMB  -0.05042+0.05142 =  qb2 0.001   

FEMC =     qb2 -0.05142+0.05042  -0.001  (3.130) 

FEMD  0  0.000   

 

It will be recalled that, in stiffness method of analysis, applied reaction or load 

is proportional the displacement caused by that reaction (See Eqn 3.65) 

Substituting Eqns (3.127) and (3.131) into Eqn (3.65), yields Eqn (3.131) 

 

 

 

where the unknown displacements, Δ is given by Eqn (3.132) 

 

Transposing Eqn (3.131),   in order to obtain the displacement, Δ, yields Eqn 

(3.133) after the inverse of the stiffness matrix, K, has been determined. 

ΦA  0.288889 -0.07778 0.022222 -0.01111  0.00000    
ΦB  -0.07778 0.155556 -0.04444 0.022222  0.001    
ΦC = b/EI 0.022222 -0.04444 0.155556 -0.07778 * 0.00000 qb2  (3.133) 
ΦD  -0.01111 0.022222 -0.07778 0.288889  -0.001    
 

 

Simplifying the Eqn (3.133), gives Eqn (3.134) 

0.000  
4 2 0 0 

 ΦA   

0.001 =EI/b 
2 8 2 0 

 ΦB   

-0.001  
0 2 8 2 

* ΦC  (3.131) 

0.000  0 0 2 4  ΦD   

  ΦA    

  ΦB    

Δ = ΦC   (3.132) 
  ΦD    



57 
 

ΦA  -0.0001   
ΦB =   qb3/EI 0.0002   
ΦC  -0.0002  (3.134) 
ΦD  0.0001   

 

To obtain the member or element reactions, MF, substitute respectively the 

stiffness of each element [i.e Eqns (3.124), (3.125), and (3.126)], and the 

member displacement given by Eqn (3.134) into Eqn (3.65), gives Eqns (3.135) 

- (3.138), and obtaining the inverse of the stiffness matrix, K, 

For member/element AB, the reactions, MF, are given by Eqn (3.135) 

MFA 
 =  EI/b 

4 2 
* qb3/EI 

-0.0001 
=  qb2 

0.0000 
 (3.135) 

MFB 2 4 0.0002 0.0006 
 

 

For member/Element BC , the reactions are as follows: 

MFB 
 =  EI/b 

4 2 
* qb3/EI 

0.0002 
=  qb2 

0.0004 
 (3.136) 

MFC 2 4 -0.0002 -0.0004 
  

For member/Element CD  

MFC 
 =  EI/b 

4 2 
* qb3/EI 

-0.0002 
=  qb2 

-0.0006 
 (3.137) 

MFD 2 4 0.0000 0.0000 
 

 

To obtain the final support moments at each support, the values of the member 

or element forces or reactions, MF, at each support of that element are 

subtracted from the fixed end moments at the supports in question. 

For member/element AB, the final support moments are obtain by as in Eqn 

(3.138) 

MAB 
= qb2 

0.0000 
- qb2 

0.0000 
= qb2 

0 
kNm  (3.138) 

MBA -0.05042 0.0006 -0.05102 
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For member/element BC, the final support moments are asp follows: 

MBC 
= qb2 

-0.05142 
- qb2 

0.0004 
= qb2 

-0.05182 
kNm  (3.139) 

MCB -0.05142 -0.0004 -0.05102   

 

For member/Element CD, 

MAB 
= qb2 

-0.05042 
- qb2 

-0.0006 
= qb2 

-0.04982 
kNm  (3.140) 

MBA 0.0000 0.0000 0.00000   

Therefore, the final support moments are as follows: 

MAB 
 0.00000  

     

MBA 
 -0.05102  

     

MBC =   qb2 -0.05182       

MCB 
 -0.05102 kNm 

    (3.141) 

MCD 
 -0.04982  

     

MDC 
 0.00000  

     

 

To obtain the span moment, Mspan, use the expression Eqn (3.142), which is 

based on the assumption that each of the spans, is consider simply supported. 

The span moment, Mspan is equal to the static span moment of each span minus 

the average of the two supports moments of that element/member. Thus 

Mspan = 0.125qb2 - 0.5(MYZ+MZY)qb2
 (3.142) 

Substituting the values of the final support moments in Eqn (3.141) into Eqn 

(3.142), yields the following results: 

Mspan(1) = 0.099299qb2  kNm  (3.143) 

Mspan(2) = 0.07408qb2 kNm  (3.144) 

Mspan(3) = 0.09979qb2 kNm     (3.145) 
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The bending moment diagram is plotted as shown in fig. 3.11. 

 

 

 0.05142qb2  0.05042qb2      

 

 

      0.0.99299qb2                   0.07408qb2     0.09979qb2   

Fig.3.11: Bending Moment Digram at Section 1-1of two-way continuous plate 

 

Following the same approach for section 2-2, the following results were 

obtained: 

Fixed end moments at the ends of the elements are given by Eqn (3.146) 

FEMAB  0.00000  
     

FEMBA 
 -0.03856  

     

FEMBC = qb2 -0.04252  
     

FEMCB 
 -0.04252  

    (3.146) 

FEMCD 
 -0.03856  

     

FEMDC 
 0.00000  

     
 

The final fixed end moment in each support is given Eqn (3.147) are 

FEMA  0  0.00000   

FEMB  -0.03856+0.04252 =  qb2 0.00396   

FEMC =     qb2 -0.04252+0.03856  -0.00396  (3.147) 

FEMD  0  0.00000   
 

The displacements at the supports are given by Eqn (3.148): 
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ΦA  -0.0004   
ΦB  0.000792   
ΦC =qb3/EI -0.00079  (3.148) 
ΦD  0.000396   

 

The members or elements reactions or forces, MF, are: 

For member/element AB, the member forces are obtain as follows: 

MFA 
= EI/b 

4 2 
* qb3/EI 

-0.0004 
=   qb2 

0.00000 
 (3.149) 

MFB 2 4 0.000792 0.00238 
  

For member/Element BC  

MFB 
= EI/b 

4 2 
* qb3/EI 

0.000792 
=   qb2 

0.001584 
 (3.150) 

MFC 2 4 -0.00079 -0.00158 
 

 

For member/Element CD  

MFC 
= EI/b 

4 2 
* qb3/EI 

-0.00079 
=   qb2 

-0.00238 
 (3.151) 

MFD 2 4 0.000396 0.00000 
  

The final support moments at each support are as follows: 

For member/element AB, the final support moments are obtained as follows: 

MAB 
=   qb2 

0.0000 
- qb2 

0.0000 
=   qb2 

0 
kNm  (3.152) 

MBA -0.03856 0.00238 -0.04094 
 

 

For member/element BC, the final support moments are given by Eqn (3.153) 

MBC 
=   qb2 

-0.04252 
- qb2 

0.001584 =   
qb2 

-0.04410 
kNm  (3.153) 

MCB -0.04252 -0.00158 -0.04094  
 

For member/Element CD, 

MCD 
=   qb2 

-0.03856 
- qb2 

-0.00238 
=   qb2 

-0.03618 
kNm  (3.154) 

MDC 0.00000 0.00000 0.00000 
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Therefore, the final support moments, are as given by Eqn (3.155): 

 

 

MAB 
 0.00000  

     

MBA 
 -0.04094  

     

MBC 
 -0.04410 kNm      

MCB = qb2 -0.04094  
    (3.155) 

MCD 
 -0.03618  

     

MDC 
 0.00000  

     
 

The span moments, Mspan, are as follows:  

Mspan(1) = 0.10374qb2  kNm        (3.156)    

Mspan(2) = 0.082446qb2 kNm        (3.157) 

Mspan(3) = 0.10572qb2 kNm       (3.158) 

The bending moment diagram is plotted as shown in fig.3.13. 

  0.04252qb2  0.03856qb2      

 

 

  0.10374qb2  0.08248qb2  0.010572qb2   

Fig.3.12: Bending Moment Diagram of Section 2-2 of two-direction continuous 

plate 

The result of the FEM, Support Moment and span moment, for a continuous 

plate spanning in one direction are presented in Table 4.23 While those 

continuous plates in two directions are presented in Tables 4. 24- 4.27. 
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3.5 Matlab Programming 

The programs were written using Matlab. Matlab is a strong mathematical tool 

used in solving complex mathematical and scientific problems. Currently, it is 

widely used in calculations. Matlab has tools which aid in programming through 

its M.files. The choice of this program language, was due to its availability and 

strong mathematical and scientific capability. Matlab M.file environment can be 

manipulated easily unlike other softwares like Fortrans and C++ to achieve the 

required results. It can shorten programs based on it inbuilt complex functions. 

3.5.1 Single Panel Rectangular Plate Program 

The programs to analyze each of the twelve individual plate cases for pure 

bending, buckling, and free vibration are presented in Appendix 1. These 

Programs are straight forward, written in simple terms and are easy to 

understand and apply. 

 

The values gotten from these programs are presented in Tables 4.1 to 4.12. The 

values for amplitude (A), maximum deflection (Wmax), and center moments 

(Mxc and Myc), were gotten by substituting the respective values at the center or 

mid span of the plate for the first six plates without free edge. This point is 

considered the point of maximum deflection and moments of the plates. While 

for those with free edges, the deflection was considered at the midpoint of the 

free edge where deflection is considered maximum. The maximum moments, 

Mxc and Myc, were consider still at the center. The edge moments were 

considered at the clamp edges only, because that is where moment occurs. Shear 

forces were considered at the edges also.   

 

Also, the program contains codes for the analysis of buckling and free vibration 

of rectangular plates based on the theory developed earlier in this chapter. The 

programs are develop in such a way that, for each plate cases, one can obtained 
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results for pure bending parameters, critical buckling load, and fundamental 

frequency of the plate. 

 

 

3.5.1.1 The Algorithm for Single Panel Rectangular Plates Program 

The single panel rectangular plate programs have the following algorithms: 

All integrals are from 0 to 1. 

 Start 

 Input the shape function, k = U*V 

 Input Poisson ratio, v;  

 Input plate dimensions, a and b; udl, q, plate thickness, h; young's modulus, E; and 

specific density of plate material, ρ. 

 Calculate aspect ratio, s = b/a 

 Calculate flexural rigidity, D = . 

 Calculate coefficient of amplitude of deflection us  = 

 

 Input values of R and Q for maximum deflection  

 Calculate amplitude of deflection, A = us*  

 Calculate coefficient of deflection, α = usk 

 Calculate maximum Deflection ,w = α*  

 Input values of R1 and Q1 for maximum or center moment  

 Calculate the coefficients of Maximum moment, β = -us(   + v     ) 

 Calculate Maximum Moment, Mxmax =  βqa2 

 Calculate the coefficients of Maximum moment, β1  = -us(v   +     ) 

 Calculate Maximum Moment, Mymax =  β1qa2 

 Input values of R4 and Q4 for maximum shear force in x-direction 

 Calculate the coefficients of maximum shear force, δ =  -us[   + (2-v)   ] 
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 Calculate Maximum shear force in x-direction, Vxmax =  δqa 

 Input values of R5 and Q5 for maximum shear force in y-direction 

 Calculate the coefficients of maximum shear force, δ1 = -us[   +  (2-v)  ] 

 Calculate Maximum shear force in y-direction, Vymax =  δ1qa 

 Calculate the buckling load factor or  coefficient , nx =  

 

 Calculate nx in terms of  denominator b2 , then n1x = nx/s
2 

 Calculate  n2x = n1x /π2 

 Calculate the Critical Buckling Load, Nx = nx * D/a2 

 Calculate the coefficient of fundamental frequency, f = 

= [ ]1/2 

 Calculate fs = f/π2 

 Calculate the fundamental frequency ω =  

 End 

3.5.1.2 The Flowchart for Single Panel Rectangular Plates Program 

 

 

 

 

 

 

 

 

D = Eh3/12(1-v2) 

        Input a,b, q, v,h,E,p 

n =  [ ]1/2 

        Input R , Q for deflection 

        Calculate, A = us*  

        Calculate, α = usk 
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                                                           A 

 

A 

 

 

 

 

 

 

 

        

              

 

 

 

 

 

 

 

        Calculate, w = α  

        Input R1, Q1 for center moment 

        Calculate, β =  -us(   + v     ), β1  = -us(v   +     ) 

        Calculate, Mxc = β  , Myc  = β1   

        Input R2, Q2 for edge moment in x direction 

        Calculate, β2 =  -us(   + v     ) 

                    Calculate, Mxe = β   

        Input R3, Q3 for edge moment in y direction 

        Calculate, β3  = -us(v   +     

 

        Calculate, Mye  = β1   

        Calculate, δ =  -us[   + (2-v)   ]

      Calculate, Vx = δqa  

        Input R4, Q4 for shear for in x direction 

        Input R5, Q5 for shear force in y direction 
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      B 

 

 

 

 

                                                             

 

 

 

      

 

 

 

 

Fig.3.13: Flowchart of the Program. 

3.5.2  One-Way Continuous Plate Program 

The continuous plate in one-way program is presented in Appendix 2. The steps 

are simple to follow, clear in understanding and easy to apply. On screen 

    Calculate, δ1 = -us[   +  (2-v)  ] 

 Calculate, Vy = δ1qa 

fs = f = [ ]1/2 

f1 = fs/π2 

ω = F=   

nx = n  =   

n1 =n*s2,   n2 = n1/π
2 

Nx = nD/a2 
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messages should be followed and necessary and correct inputs should be supply 

by the user as required. The program follow a sequence of the analysis 

developed in section 3.4.1.  

 

3.5.3 Two-Way Continuous Plate Program 

Continuous plate spanning in two directions program is presented in Appendix 

3. This is a lengthy program and requires diligences and consistency. It is 

written in clear terms and is easy to follow and apply. The program also, follow 

a sequence of the analysis in section 3.4.2.  

 

In all the programs for continuous plate analysis, the user need to have a 

knowledge of structural mechanics especially, how to apply stiffness method in 

analyzing indeterminate  structures, a good knowledge of rectangular plate 

analysis especially, using polynomial functions.   Knowledge of MATLAB or 

programming will be an enhancer or added advantage. While working, it will be 

of great advantage if, the user is familiar with analysis of plate or slab manually.   
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Results of Pure Bending Analysis 

The values of the coefficients of deflection, moment and shear force from the 

program developed in this work for pure bending analysis for the twelve (12) 

plate cases under consideration, are presented in the following Tables 4.1 to 

4.12: 

Table 4.1: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniform load over the entire area of SSSS plate for aspect ratio,  s= b/a. 

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β1 

Vxc =δqa 
δ 

Vyc 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.04236 0.00414 0.05163 0.05163 0.07491 0.37491 0.00000 0.00000 
1.2 0.05902 0.00576 0.06686 0.05502 0.43034 0.37890 0.00000 0.00000 
1.5 0.08121 0.00793 0.08629 0.05668 0.48861 0.36635 0.00000 0.00000 
1.6 0.08762 0.00856 0.09176 0.05673 0.50310 0.35949 0.00000 0.00000 
2.0 0.10843 0.01059 0.10927 0.05591 0.54485 0.32731 0.00000 0.00000 

 
where,   

u = Coefficient of amplitude of deflection 

q = Uniformly Distributed Load 

α = Coefficient of deflection 

β and β1  = Cofficients of center moments in x- and y- directions respectively  

β2 and β3  = Cofficients of edge moments in x- and y- directions respectively  

δ and δ1  = Cofficients of shear force in x- and y- directions respectively  

D = Plate flexural rigidity 
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a = dimension along x-axis. 

 

 

Table 4.2: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniform load over the entire area of CCCC plate for aspect ratio, s= b/a. 

Aspect 
Ratio         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxc =δqa 
δ 

Vyc=δ1qa 
δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.34028 0.00133 0.02765 0.02765 0.25521 0.25521 -0.04252 -0.04252 
1.2 0.46565 0.00182 0.03517 0.02894 0.34924 0.20211 -0.05821 -0.04042 
1.5 0.60283 0.00236 0.04270 0.02804 0.45212 0.13396 -0.07535 -0.03349 
1.6 0.63599 0.00248 0.04441 0.02745 0.47699 0.11645 -0.07950 -0.03105 
2.0 0.72593 0.00284 0.04877 0.02495 0.54444 0.06806 -0.09074 -0.02269 

 
 

Table 4.3: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniform load over the entire area of CSSS plate for aspect ratio is s= b/a. 

Aspect 
Ratio,        

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β2qa2 

β3 

1.0 0.07211 0.00282 0.03718 0.04191 0.29203 0.33800 0.00000 -0.06760 
1.2 0.10971 0.00429 0.05185 0.04805 0.35883 0.29760 0.00000 -0.07142 
1.5 0.16539 0.00646 0.07236 0.05306 0.43554 0.22971 0.00000 -0.06891 
1.6 0.18241 0.00713 0.07843 0.05392 0.45532 0.20876 0.00000 -0.06680 
2.0 0.23984 0.00937 0.09837 0.05509 0.51265 0.14053 0.00000 -0.05621 

 
 

Table 4.4: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniform load over the entire area of CSCS plate for aspect ratio, s= b/a.  

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.10180 0.00199 0.02863 0.03754 0.24941 0.38175 0.00000 -0.06363 

1.2 0.16898 0.00330 0.04268 0.04618 0.32622 0.36671 0.00000 -0.07334 

1.5 0.28226 0.00551 0.06469 0.05508 0.42496 0.31362 0.00000 -0.07841 

1.6 0.31969 0.00624 0.07165 0.05701 0.45206 0.29268 0.00000 -0.07805 
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2.0 0.45335 0.00886 0.09563 0.06092 0.53269 0.21251 0.00000 -0.07084 

 
 

 

Table 4.5: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniform load over the entire area of CCSS plate for aspect ratio, s= b/a. 

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.13445 0.00210 0.03277 0.03277 0.25210 0.25210 -0.05042 -0.05042 

1.2 0.18552 0.00290 0.04203 0.03459 0.34785 0.20130 -0.06957 -0.04831 

1.5 0.24690 0.00386 0.05247 0.03446 0.46293 0.13716 -0.09259 -0.04115 

1.6 0.26307 0.00411 0.05511 0.03407 0.49326 0.12042 -0.09865 -0.03854 

2.0 0.31089 0.00486 0.06266 0.03206 0.58292 0.07287 -0.11658 -0.02915 

 
 

Table 4.6: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniformly load over the entire area of CCCS plate for aspect ratio, s= b/a. 

Aspect 
Ratio         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.20569 0.00161 0.02700 0.03150 0.19283 0.30854 -0.03857 -0.05142 

1.2 0.31120 0.00243 0.03728 0.03577 0.29175 0.27013 -0.05835 -0.05403 

1.5 0.45456 0.00355 0.05019 0.03804 0.42615 0.20203 -0.08523 -0.05051 

1.6 0.49475 0.00387 0.05363 0.03807 0.46383 0.18118 -0.09277 -0.04832 

2.0 0.61721 0.00482 0.06365 0.03665 0.57864 0.11573 -0.1157 -0.03858 
 

Table 4.7: Coefficients of Amplitude, Deflection, Moments and Shear forcedue 
to uniformly load over the entire area of SSFS plate for aspect ratio, s= b/a. 

Aspect 
Ratio ,        

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.02659 0.01105 0.08007 0.04293 0.40839 0.48219 0.00000 0.00000 

1.2 0.03008 0.01250 0.08843 0.04138 0.42293 0.40667 0.00000 0.00000 

1.5 0.03353 0.01393 0.09659 0.03957 0.43570 0.32767 0.00000 0.00000 

1.6 0.03435 0.01428 0.09853 0.03910 0.43857 0.30753 0.00000 0.00000 
2.0 0.03667 0.01524 0.10397 0.03771 0.44626 0.24652 0.00000 0.00000 
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Table 4.8: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniformly load over the entire area of SCFS plate for aspect ratio, s= b/a. 

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.03299 0.00547 0.04877 0.02989 0.45688 0.27777 -0.09138 0.00000 

1.2 0.03525 0.00586 0.05123 0.02233 0.48935 0.22550 -0.09787 0.00000 

1.5 0.03733 0.00621 0.05339 0.02074 0.51834 0.17553 -0.10367 0.00000 

1.6 0.03780 0.00628 0.05387 0.02036 0.52489 0.16346 -0.10498 0.00000 

2.0 0.03908 0.00650 0.05517 0.01933 0.54253 0.12829 -0.10851 0.00000 
 

Table 4.9: Coefficients of Amplitude, Deflection, Moments and Shear force due 
to uniformly load over the entire area of CSFS plate for aspect ratio, s= b/a. 

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.07073 0.00884 0.06167 0.04062 0.34975 1.69961 0.00000 -0.01238 

1.2 0.08749 0.01094 0.07352 0.04106 0.36370 1.5347 0.00000 -0.01063 

1.5 0.10408 0.01301 0.08478 0.03990 0.37769 1.2915 0.00000 -0.08095 

1.6 0.10796 0.01350 0.0873 0.03939 0.38127 1.2205 0.00000 -0.0738 

2.0 0.11853 0.01482 0.09417 0.03752 0.39218 0.09907 0.00000 -0.05186 

 
 

Table 4.10: Coefficients of Amplitude, Deflection, Moments and Shear force 
due to uniformly load over the entire area of CCFS plate for aspect ratio, s= b/a.  

Aspect 
Ratio         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β2qa2 

β3 

1.0 0.09696 0.00485 0.04127 0.02451 0.37269 1.07044 -0.07454 -0.06787 

1.2 0.10953 0.00548 0.04524 0.02309 0.42100 0.89889 -0.0842 -0.05324 

1.5 0.12015 0.00601 0.04834 0.02120 0.46183 0.71076 -0.09237 -0.03738 

1.6 0.12243 0.00612 0.04903 0.02069 0.47058 0.66290 -0.09412 -0.03348 

2.0 0.12828 0.00641 0.05063 0.0192 0.49308 0.52051 -0.09862 -0.02245 
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Table 4.11: Coefficients of Amplitude, Deflection, Moments and Shear force 
due to uniformly load over the entire area of SCFC plate for aspect ratio, s= b/a. 

Aspect 
Ratio,         

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β3qa2 

β3 

1.0 0.03672 0.00305 0.03571 0.01593 0.40781 0.19132 -0.06797 0.00000 

1.2 0.03818 0.00317 0.036524 0.01472 0.42340 0.15339 -0.07057 0.00000 

1.5 0.03930 0.00327 0.03720 0.01364 0.43654 0.11834 -0.07276 0.00000 

1.6 0.03956 0.00329 0.03734 0.01349 0.43941 0.11001 -0.07324 0.00000 

2.0 0.04023 0.00335 0.03772 0.01275 0.44700 0.08599 -0.07450 0.00000 

 
Table 4.12: Coefficients of Amplitude, Deflection, Moments and Shear force 
due to uniformly load over the entire area of CCFC plate for aspect ratio, s= b/a. 

Aspect 
Ratio ,        

 
S = b/a 

 

A = 
uq4/D  

 
 u 

Wmax = 
αqa4/D 

 

α 

Center Moment Shear Force Fixed Edge Moment 

Mxc = 
βqa2 

β 

Myc = 
β1qa2 

β 1 

Vxmax 

=δqa 
δ 

Vymax 
=δ1qa 

δ1 

Mxe = 
β2qa2 

β2 

Mye = 
β2qa2 

β3 

1.0 0.1143 0.00286 0.03165 0.01664 0.35146 0.76693 -0.05858 -0.04000 

1.2 0.12235 0.00306 0.03310 0.01525 0.37623 0.62339 -0.06270 -0.02974 

1.5 0.12856 0.00321 0.03412 0.01381 0.39533 0.48225 -0.06589 -0.02000 

1.6 0.12983 0.00325 0.03432 0.01347 0.39923 0.44806 -0.06654 -0.01775 

2.0 0.133 0.00333 0.03477 0.01251 0.40898 0.34896 -0.06816 -0.01164 

 
 

4.1.2 Results of Buckling Analysis 

The values of the coefficients of critical buckling load from the developed 

program for the twelve (12) plate cases under consideration, are presented on 

the following Tables 4.13 -4.18:  

Table 4.13:  Critical Buckling Load Coefficients for SSSS and CCCC plates  

Aspect Ratio, 
 

S = b/a 
 
 

SSSS plate CCCC plate 

Nx = nx ; 

       nx 

Nx =  n1x  ; 

       n1x 

Nx= n2x ; 

        n2x 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

       n1x 

Nx= n2x ; 

        n2x 
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where,  
nx  is the coefficient of critical buckling load of the plate for aspect ratio, s = b/a 

n1x is the coefficient of critical buckling load of the plate for aspect ratio, p = a/b 

n2x  = n1x/ π
2 

D = Plate flexural rigidity 
a and b =  dimensions in x- and y- directions respectively 
 
Table 4.14:  Critical Buckling Load Coefficients for CSSS and CSCS plates   

nx, n1x, n2x, D, a and b are as defined in Table 4.13 

Table 4.15:  Critical Buckling Load Coefficients for CCSS and CCCS plates 

nx, n1x, n2x, D, a and b are as defined in Table 4.13 

 

 

 

1.0 39.508 39.508 4.003 108.000 108.000 10.943 

1.2 28.355 40.831 4.137 78.921 113.647 11.515 

1.5 20.608 46.367 4.698 60.963 137.167 13.898 

1.6 19.102 48.901 4.955 57.784 147.926 14.988 

2.0 15.435 61.742 6.256 50.625 2.2.500 20.518 

Aspect Ratio; 
 

S = b/a 
 
 

CSSS Plate CSCS Plate 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

         n1x 

Nx= n2x ; 

        n2x 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

n1x 

Nx=  n2x ; 

      n2x 

1.0 56.805 56.805 5.756 84.941 84.941 8.606 

1.2 37.336 53.763 5.447 51.172 73.688 7.466 

1.5 24.765 55.721 5.646 30.635 68.928 6.984 

1.6 22.454 57.483 5.824 27.048 69.244 7.016 

2.0 17.078 68.313 6.922 19.074 76.294 7.730 

Aspect Ratio; 
 

S = b/a 
 
 

CCSS Plate CCCS Plate 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

        n1x 

Nx= n2x ; 

        n2x 

Nx = nx ; 

        nx 

Nx =  n1x   

         n1x 

Nx=  n2x  

      n2x 

1.0 64.737 64.737 6.559 89.333 89.333 9.051 

1.2 46.917 67.560 6.845 59.047 85.027 8.616 

1.5 35.253 79.320 8.037 40.424 90.954 9.216 

1.6 33.086 84.700 8.582 37.140 95.078 9.633 

2.0 27.997 111.987 11.347 29.771 119.083 12.066 
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Table 4.16:  Critical Buckling Load Coefficients for SSFS and SCFS plates 

nx, n1x, n2x, D, a and b are as defined in Table 4.13 

 

Table 4.17:  Critical Buckling Load Coefficients for CSFS and CCFS plates 

nx, n1x, n2x, D, a and b are as defined in Table 4.13 

 

Table 4.18: Critical Buckling Load Coefficients for SCFC and CCFC Plate  

Aspect Ratio;  
 

S = b/a 
 
 

SSFS  SCFS 

Nx = nx ; 

         nx 

Nx =  n1x  ; 

        n1x 

Nx= n2x ; 

        n2x 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

         n1x 

Nx = n2x ; 

        n2x 

1.0 15.415 15.415 1.562 26.472 26.472 2.682 

1.2 13.627 19.622 1.988 24.715 35.589 3.606 

1.5 12.227 27.512 2.788 23.333 52.499 5.319 

1.6 11.934 30.550 3.095 23.042 58.988 5.977 

2.0 11.179 44.716 4.531 22.293 89.171 9.035 

Aspect Ratio; 
 

S= b/a 
 
 

CSFS Plate CCFS Plate 

Nx = nx ; 

nx 

Nx =  n1x  ; 

n1x 

Nx= n2x ; 

         n2x  

Nx = nx  

        nx 

Nx =  n1x   

        n1x 

Nx= n2x  

    n2x  

1.0 19.283 19.283 1.957 29.891 29.891 3.029 

1.2 15.589 22.448 2.275 26.461 38.104 3.861 

1.5 13.105 29.485 2.987 24.122 54.274 5.499 

1.6 12.633 32.341 3.277 23.673 60.603 6.140 

2.0 11.507 46.023 4.664 22.593 90.370 9.156 

Aspect Ratio; 
 

S= b/a 
 
 

SCFC Plate CCFC Plate 

Nx = nx ; 

        nx 

Nx =  n1x  ; 

       n1x 

Nx= n2x ; 

          n2x  

Nx = nx ; 

nx 

Nx =  n1x  ; 

         n1x 

Nx= n2x ; 

         n2x  

1.0 47.451 47.451 4.808 50.714 50.714 5.139 
1.2 45.705 65.815 6.668 47.376 68.221 6.912 
1.5 44.329 99.740 10.106 45.087 101.445 10.279 
1.6 44.039 112.739 11.423 44.646 114.294 11.580 
2.0 43.291 173.166 17.545 43.581 174.326 17.663 
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nx, n1x, n2x, D, a and b are as defined in Table 4.13 

 
 
 
 
 
4.1.3 Results of Free Vibration Analysis 

The values of the coefficients of the fundamental natural frequency, ω, from the 

Program written for the twelve (12) plate cases under consideration, are 

presented in Tables 4.19-4.22: 
 

Table 4.19: Coefficients of Fundamental Natural Frequency, ω, for SSSS, 
CCCC and CSSS Plates. 

Aspect 
Ratio ; 

 
S = b/a 

 
 

SSSS Plate CCCC Plate CSSS Plate 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
  ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

 ω = ; 

 
   ƒ1S= fs/π2 

1.0 19.749 2.001 36.000 3.648 23.680 2.399 

1.2 16.729 1.695 30.774 3.118 19.197 1.945 

1.5 14.262 1.445 27.047 2.740 15.635 1.584 

1.6 13.732 1.391 26.333 2.668 14.888 1.508 

2.0 12.344 1.251 24.648 2.497 12.984 1.316 

where  is the coefficient of the fundamental natural frequency 

         ƒ1S =fs/π
2          

         D = Plate Flexural rigidity 
         a = dimension along x-axis 
         h = plate thickness 
         ρ = specific density of the plate 
 
Table 4.20: Coefficients of Fundamental Natural Frequency, ω, CSCS, CCSS and 
CCCS Plate. 

Aspect 
Ratio; 

 
S= b/a 

 
S  

CSCS Plate CCSS Plate CCCS Plate 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

1.0 28.956 2.934 27.129 2.749 31.868 3.229 

1.2 22.475 2.277 23.095 2.340 25.909 2.625 

1.5 17.389 1.762 20.019 2.028 21.437 2.172 

1.6 16.340 1.656 19.394 1.965 20.548 2.082 
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2.0 13.721 1.390 17.840 1.808 18.397 1.864 

  where , ƒ1S, D, a, h, and ρ are as defined in Table 19 

 

 

Table 4.21: Coefficients of Fundamental Natural Frequency, ω, SSFS, SCFS 
and CSFS Plate. 

Aspect 
Ratio; 

 
S= b/a 

 
S 

SSFS Plate SCFS Plate CSFS Plate 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

1.0 12.335 1.250 17.348 1.758 13.797 1.398 

1.2 11.598 1.175 16.762 1.698 12.405 1.257 

1.5 10.986 1.113 16.287 1.650 11.374 1.152 

1.6 10.853 1.100 16.185 1.640 11.167 1.131 

2.0 10.505 1.064 15.920 1.613 10.658 1.080 

where , ƒ1S, D, a, h, and ρ are as defined in Table 19 

Table 4.22: Coefficients of Fundamental Natural Frequency, ω, for CCFS, 

SCFC and CCFC Plate 

Aspect 
Ratio; 

      
  S= b/a 
 

CCFS Plate  SCFC Plate CCFC Plate 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

ω = ; 

 
     ƒS 

ω = ; 

 
 ƒ1S =fs/π2 

1.0 18.434 1.868 23.863 2.418 24.669 2.500 

1.2 17.344 1.757 23.419 2.373 23.843 2.416 

1.5 16.560 1.678 23.064 2.337 23.260 2.357 

1.6 16.405 1.662 22.988 2.329 23.146 2.345 

2.0 16.026 1.624 22.793 2.309 22.869 2.317 

where , ƒ1S, D, a, h, and ρ are as defined in Table 19 

 
 
4.1.4 Results of Analysis of Continuous Plate Spanning in one way 
 
The results of fixed edge moment (FEM) and  support moment (SPTM) 

obtained from manual analysis and computer program developed of a one-way 

four span continuous plate for aspect ratio (S =b/a = 1), are presented in the 

Tables 4.23 for aspect ratio. 
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Table 4.23: Results of Fixed edge moment (FEM) and Support Moment 
(SPTM) obtained from manual analysis and from computer program for one-
way four span continuous plate. s= 1. 
FEM = β1qa2; 

         β1 

FEM = β2qa2; 

        β2 

SPTM=  β3qa2; 

             β3 

SPTM = β4qa2; 

        β4 

0.0000 0.0000 0.00000 0.00000 
-0.06760 -0.06760 -0.06590 -0.06590 
-0.06363 -0.06363 -0.06136 -0.06135 
-0.06363 -0.06363 -0.06250 -0.06249 
-0.06363 -0.06363 -0.06476 -0.06476 
-0.06363 -0.06363 -0.06590 -0.06590 
-0.06760 -0.06760 -0.06930 -0.06930 
0.0000 -0.00000 0.00000 0.00000 

 
Where, 

 β1 and β3 are the cofficients of fixed end moment and support moment 

respectively obtained from manual approach. And β2 and β4 are the cofficients of 

fixed end moment and support moment respectively obtained from the 

developed program. 

 
4.1.5 Results of Analysis of Continuous Plate Spanning in Two-Way 
 
The results of fixed edge moment (FEM) and  support moment (SPTM) 

obtained from manual analysis and computer program developed of a two-way 

four by three span continuous plate for aspect ratio (S =b/a = 1), are presented in 

the Tables 4.24-4.27. 
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Table 4.24: Results of Fixed End Moment (FEM) and Support Moment (SPTM) 
obtained from manual analysis and computer program for two-way four span 
continuous plate at Section S-S.  S = 1  

FEM = β1qa2; 

β1 

FEM = β2qa2; 

β2 

SPTM = β3qa2; 

β3 

SPTM = β4qa2; 

β4 

0.0000 0.0000 0.00000 0.0000 
-0.05042 -0.05042 -0.05085 -0.05085 
-0.05142 -0.05142 -0.05199 -0.05199 
-0.05142 -0.05142 -0.05171 -0.05171 
-0.05142 -0.05142 -0.05113 -0.05114 
-0.05142 -0.05142 -0.05085 -0.05085 
-0.05042 -0.05042 -0.04999 0.04999 
0.0000 0.0000 0.00000 0.0000 

 
Where, 

 β1 and β3 are the cofficients of fixed end moment and support moment 

respectively obtained from manual approach. And β2 and β4 are the cofficients of 

fixed end moment and support moment respectively obtained from the 

developed program. 

 

Table 4.25: Results of Fixed End Moment (FEM) and Support Moment (SPTM) 
obtained from manual analysis and computer program for two-direction four 
span continuous plate at Section T-T.  S = 1 

FEM = β1qa2; 

β1 

FEM = β2qa2; 

β2 

SPTM = β3qa2; 

β3 

SPTM = β4qa2; 

β4 

0.0000 0.0000 0.00000 0.0000 

-0.03856 -0.03857 -0.04026 -0.04027 

-0.04252 -0.04253 -0.04478 -0.04480 

-0.04252 -0.04253 -0.04365 -0.04367 

-0.04252 -0.04253 -0.04139 -0.04140 

-0.04252 -0.04253 -0.04024 -0.04027 

-0.03856 -0.0387 -0.03686 -0.03686 
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0.0000 0.0000 0.00000 0.0000 

 

 
 
Table 4.26: Results of Fixed End Moment (FEM) and Support Moment (SPTM) 
obtained from manual analysis and computer program for two-direction three 
span continuous plate at Section 1-1.  S = 1 

FEM = β1qa2; 

β1 

FEM=  β2qa2; 

β2 

SPTM = β3qa2; 

β3 

SPTM = β4qa2; 

β4 

0.0000 0.00000 0.00000 0.00000 

-0.05042 -0.05042 -0.05102 -0.05102 

-0.05142 -0.05142 -0.05182 -0.05182 

-0.05142 -0.05142 -0.05102 -0.05102 

-0.05042 -0.05042 -0.04982 0.04982 

0.00000 0.00000 0.00000 0.00000 

 
 
Table 4.27: Results of Fixed End Moment (FEM) and Support Moment (SPTM) 
obtained from manual analysis and computer program for two-direction three 
span continuous plate at Section 2-2.  S = 1 

FEM = 

β1qa2; 

         β1 

FEM= β2qa2; 

        β2 

Percentage 
Difference 
100(β2- β1)/ 

β1 

SPTM = 

β3qa2 

        β3 

SPTM = 

β4qa2 

β4 

Percentage 
Difference 

100(β4- β3)/ β3 

0.0000 0.00000 0.00 0.00000 0.00000 0.00 
-0.03856 -0.03857 0.026 -0.04094 -0.04095 0.024 
-0.04252 -0.04253 0.024 -0.04410 -0.04412 0.045 
-0.04252 -0.04253 0.024 -0.04094 -0.04095 0.024 
-0.03856 -0.03857 0.026 -0.03618 -0.03618 0.00 
0.00000 0.00000 0.00 0.00000 0.00000 0.00 

 

4.2 Discussion of Results 

4.2.1 Discussion of the Results of Pure Bending Analysis 

In other to validate the solutions of this present study (i.e from the program), 

comparison was made between the results of this work for aspect ratios 1.0, 1.2, 

1.5, 1.6 and 2.0, with the solutions obtained from existing research works that 

used classical and approximate methods. Preference was given to the works of 
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Ibearugbulem et al, who used the same polynomial functions and whose results 

are already established as adequate.  

Table 4.28: Comparison of coefficients of amplitude of deflection 'u' from the 
developed SSSS plate program and those of Ibearugbulem et al. (2013) 

Aspect Ratio ;       
 

  S = b/a 
 

Present study 
A = uq4/D ; 

 
 u 

Ibearugbulem et 
al.(2013) 

A = uq4/D ; 
 

 u1 

% difference 
100(u- u1)/ u1 

1.0 0.04236 0.04236 0.00 

1.2 0.05902 0.05902 0.00 

1.5 0.08121 0.08121 0.00 

1.6 0.08762 0.08762 0.00 

2.0 0.10843 0.10843 0.00 

Aver. %diff.   0.00 
 Where A is amplitude of deflection 

The amplitude coefficient, 'u' at the center of the plate, obtained from this 

developed program in column 2, of Table 4.28, were compared with those 

obtained by Ibearugbulem et al. (2013), who used direct integration and work 

principles in their work. The percentage difference obtained from 100(za-zb)/zb 

(i.e the general expression of percentage difference, where z, is an arbitral 

viarable representing coefficient of any viable in consideration, and subscript, a, 

b represent any number, 0,1, 2, … etc, for example, here, z = u, a = 0 and b = 1), 

for aspect ratios 1.0, 1.2, 1.5, 1.6, and 2.0 are 0.000%, 0.000%, 0.000%, 0.000% 

and 0.000% respectively. These indicate that the results obtained from the 

present study, are accurate and adequate.  

Table 4.29: Comparison of coefficients of deflection 'α' obtained from the developed 
SSSS plate program with those of Ibearugbulem et al. (2013), Timoshenko and 
Woinowsky-Krieger (1959) and Ventsel and Krauthammer (2001) 

Aspect 
Ratio; 

       
   S = b/a 

 

Present 
study 

Wmax = 
αqa4/D; 

 

α 

Ibearugbulem 
et al.(2013) 

Wmax = 
αqa4/D; 

 

 α1 

% difference 
100(α- α1)/ 

α1 

Timoshenko 
et al.(1959) 

Wmax = 
αqa4/D; 

 

 α2 

% 
difference 
100(α- α2)/ 

α2 

Ventsel et 
al.(2001) 
Wmax = 
αqa4/D; 

 

 α3 

% 
difference 
100(α- α3)/ 

α3 

1.0 0.00414 0.00414 0.00 0.06004 1.970 0.00416 -2.479 

1.2 0.00576 0.00576 0.00 0.00564 2.128 0.00580 -2.775 

1.5 0.00793 0.00793 0.00 0.00772 2.720 0.00798 -3.324 
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1.6 0.00856 0.00856 0.00 0.00830 3.133 0.00861 -3.687 

2.0 0.01059 0.01059 0.00 0.01013 4.541 0.01065 -0.563 

Aver. 
%diff. 

  0.00  2.898 
 

-2.5656 

Also, comparing the values of the deflection coefficient, α, at the center of the 

plate, obtained from the present study (i.e developed program) with those 

obtained by Ibearugbulem et al. (2013) in Table 4.29, the percentage difference 

for aspect ratios 1.0, 1.2, 1.5, 1.6, and 2.0 are 0.000%, 0.000%, 0.000%, 0.000% 

and 0.000% respectively. This indicates that there is no difference between the 

two results. Comparing the same results with those obtained by Timoshenko 

and Woinowsky-Krieger (1959), the percentage difference for the same aspect 

ratios, given above are 1.970%, 2.128%, 2.720%, 3.133%, and 4.541% 

respectively; these are all less than 5%. Thus, it agrees with the fact that the 

values obtained from this program are close to the exact values and are upper 

bound to those values obtained from existing research. To further validate these 

values, comparison was made with those values obtained by Ventsel and 

Krauthammer (2001). Here, the percentage differences for the same aspect 

ratios are -2.479%, -2.775%, -3.324%, -3.687%, and -0.56338% respectively, 

which indicate that the values from the present work (or PROGRAM) are lower 

bound to those of Ventsel and Krauthammer (2001). However, both of them are 

close. The results of the present study, lies between two of the results from 

existing research works, which further confirm the accuracy of the results 

obtained, and hencethe adequacy of the program. From the Table 4.29, it is seen 

that deflection increases with increase in aspect ratio.  
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Table 4.30: Comparison of coefficients of bending moment, 'β' obtained from 

the developed SSSS plate program with those of Ibearugbulem et al. (2013)  

Aspect 
Ratio         

S = b/a; 
 

Present study 
Mxc= βqa2; 

 
β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2; 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc = β1qa2; 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2; 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.05163 0.05163 0.00 0.05163 0.05163 0.00 

1.2 0.06686 0.06686 0.00 0.05502 0.05502 0.00 

1.5 0.08629 0.08629 0.00 0.05668 0.05668 0.00 

1.6 0.09176 0.09177 -0.01 0.05673 0.05673 0.00 

2.0 0.10927 0.10927 0.00 0.05591 0.05591 0.00 
Aver. 
%diff. 

  -0.002   0.00 

 

The percentage difference between thenewly determined values of the moment 

Mxc at the center of the plate for the aspect ratios indicated and those values 

obtained by Ibearugbulem et al. (2013) (see Table 4.30), indicate that, the 

maximum percentage difference is -0.01%.  This is insignificant, and hence it 

indicates that, these new values obtained in this study, are very close to those 

values they compared with. In a similar way, moment in y-direction (Myc) given 

in Table 4.30, indicate insignificant difference. The moments at the center of the 

plate in x-direction increases with increase in aspect ratio, while the center 

moment in the y- direction, increased steadily with increase in aspect ratio, but  

decreases slightly with aspect ratio of 2.   

Table 4.31 Comparison of coefficients of shear force 'δ' obtained from the 
developed SSSS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio; 
S = b/a 

 

Present study 
Vxmax = δqa; 

 
δ 

Ibearugbulem 
et al(2014) 
Vxmax = δqa; 

δ1 

% difference 
100(δ- δ1)/ δ1 

Present study 
Vymax = δ1qa; 

δ2 

Ibearugbulem 
et al(2014) 

Vymax = δ1qa; 
δ3 

% difference 
100(δ2- δ3)/ 

δ3 

1.0 0.37491 0.37491 0.00 0.37491 0.37491 0.00 

1.2 0.43034 0.43033 0.002 0.37890 0.37890 0.00 

1.5 0.48861 0.48860 0.002 0.36635 0.36634 0.003 

1.6 0.50310 0.50309 0.002 0.35949 0.35948 0.003 

2.0 0.54485 0.54482 0.006 0.32731 0.3273 0.003 
Aver. 
%diff. 

  0.002   0.002 
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Comparing the values of the shear forces, Vx in x-direction obtained in this 

work with those obtained by Ibearugbulem et al. (2014) for the same five aspect 

ratios gave percentage differences between them as 0.000%, 0.002%, 0.002%, 

0.002% and 0.006% respectively which indicate that the values are close to 

those compared with. And for shear force, Vy in y-direction, 0.000%, 0.000%, 

0.003%, 0.003% and 0.003% respectively were obtained as percentage 

differences, which also indicate the closeness of the values. The shear force in 

x- direction increased with increase in aspect ratio, while those in y- direction 

decreased with increase in aspect ratio.  

The moments at the edges of a simply supported plate, are zero given that a 

simple support, does not develop or have moment. 

 

Hence, the analysis, indicates that the results of present study (i.e program) are 

reliable and adequate, and thus, provides a quicker approach for the analysis of 

rectangular SSSS plate loaded uniformly over the entire surface. 

 

In table 4.32, thecomputer results of the CCCC plate analyzed in bending were 

compared with results of pure bending analysis of the CCCC plate obtained by 

some scholars based on exact and approximate methods.  

Table 4.32: Comparison of coefficients of deflection 'α' obtained from the 
developed CCCC plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio;  
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D; 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D; 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.00133 0.00133 0.00 0.00126 5.556 

1.2 0.00182 0.00182 0.00 0.00172 5.814 

1.5 0.00236 0.00236 0.00 0.00220 7.273 

1.6 0.00248 0.00249 -0.40 0.00230 7.826 

2.0 0.00284 0.00284 0.00 0.00254 11.811 

Aver. %diff.   -0.080  7.656 
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Comparison of the deflection coefficients, α, at the center of the plate, obtained 

from the present study with those obtained by Ibearugbulem et al. (2014), 

yielded percentage differences of  0.000%, 0.000%, 0.000%, -0.400% and 

0.000% respectively for aspect ratios 1.0, 1.2, 1.5, 1.6, and 2.0. The average 

pencentage dofference, was -0.080%. These values indicate that they agree 

closely with each other. Comparing the same values with those obtained by 

Timoshenko and Woinowsky-Krieger (1959), gave percentage differences of 

5.556%, 5.814%, 7.273%, 7.826%, and 11.811% respectively for the same 

aspect ratio. All the values are above 5%, but are within acceptable limit in 

statistics. The differences are due to so much assumptions and approximations 

used in the classical approach in order to ease computations. Also, it can be 

seen, that deflection increased with increase in aspect ratio. The implication is 

that a square plate deflects less than other rectangular plates. 

The coefficients of bending moment, β, obtained from the program developed 

for the bending analysis of CCCC plate, were compared with those of 

Ibearugbulem et al. (2013) in Table 4.33. 

Table 4.33: Comparison of coefficients of bending moment 'β' obtained from 
the developed CCCC plate program with those of Ibearugbulem et al. (2013) 

Aspect 
Ratio ; 

 
S = b/a 

 

Present study 
Mxc= βqa2; 

 
β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2; 

 
β1 

% difference 
100(β- β1)/ β1 

Present study 
Myc= β1qa2; 

 
β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2; 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.02765 0.02769 -0.14 0.02765 0.02769 -0.144 

1.2 0.03517 0.03522 -0.14 0.02894 0.02899 -0.002 

1.5 0.04270 0.04275 -0.12 0.02804 0.02808 -0.142 

1.6 0.04441 0.04446 -0.11 0.02745 0.02748 -0.109 

2.0 0.04877 0.04881 -0.08 0.02495 0.02497 -0.080 
Aver. 
%diff. 

  -0.118   -0.095 

 

For the moment at the center of the CCCC plate, the comparison indicates that 

the percentage difference between the values of the moments at the center of the 
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plate in x-direction, Mxc, obtained from the program and those obtained by 

Ibearugbulem et al.(2013) are -0.14%,  -0.14%, -0.12%, -0.11% and -0.08%   

for the same aspect ratios.  And the average percentage difference is -0.118%. 

All these are less than 5% and are lower bound solutions to those compared 

with. This indicates that the results are close to those compared with. For the 

values of moment Myc, considered in y- direction at the center of the plate, the 

percentage differences are -0.14%, -0.002%, -0.142%, -0.109%, and -0.080% 

respectively.  Since the differences, are insignificant, the values can be said to 

be close to each other.  

Table 4.34: Comparison of coefficients of shear force 'δ' obtained from the 
developed CCCC plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio; 
 

S = b/a 
 

Present 
study 

Vxmax = δqa; 
δ 

Ibearugbulem 
et al(2014) 
Vxmax = δqa; 

δ1 

% difference 
100(δ- δ1)/ δ1 

Present study 
Vymax = δ1qa; 

δ2 

Ibearugbulem 
et al(2014) 

Vymax = δ1qa; 
δ3 

% difference 
100(δ2- δ3)/ 

δ3 

1.0 0.25521 0.2556 -0.15 0.25521 0.2556 -0.15 

1.2 0.34924 0.3498 -0.16 0.20211 0.2024 -0.143 

1.5 0.45212 0.4527 -0.13 0.13396 0.1341 -0.104 

1.6 0.47699 0.4775 -0.11 0.11645 0.1166 -0.129 

2.0 0.54444 0.5449 0.08 0.06806 0.0681 -0.059 

Aver. %diff.   -0.126   -0.585 
 

Table 4.34 contains the comparison between the results of the program for the 

determination of shear forces along the edges in both x- and y- directions. 

Comparing the values of the shear forces, Vx, in x-direction, obtained from the 

new program, with those obtained by Ibearugbulem et al. (2014), yielded 

percentage differences of -0.15%, -0.16%, -0.13%, -0.11% and  -0.08% 

respectively for the same aspect ratios. This low percentage difference indicate 

the closeness of the values compared.  For shear force, Vy, in y-direction, the 

percentage difference obtained are -0.15%, -0.143%, -0.104%, -0.129% and -

0.059% respectively. This also shows the closeness of the values.  The shear 

force in x-direction increased with increase in aspect ratio, while that in y- 

direction decreased with increase in aspect ratio. 
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Also, for bending analysis, the coefficient of edge moment, β, obtained from the 

computer program for CCCC plate, was compared in Table 4.35 with those 

obtained by Ibearugbulem et al. (2014). 

Table 4.35: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CCCC plate program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio ; 

 
S = b/a 

 

Present 
study 

Mxe = βqa2; 
 

β 

Ibearugbulem 
et al.(2013) 
Mxe = βqa2; 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Mye = β1qa2; 
 

β 2 

Ibearugbulem 
et al.(2013) 
Mye = β1qa2; 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 -0.0425 -0.0426 -0.23 -0.04252 -0.0426 -0.176 

1.2 -0.0582 -0.0583 -0.17 -0.04042 -0.0405 -0.198 

1.5 -0.0754 -0.0755 -0.13 -0.03349 -0.0335 -0.030 

 1.6 -0.0795 -0.0796 -0.10 -0.03105 -0.0311 -0.161 

2.0 -0.0907 -0.0908 -0.11 -0.02269 -0.0227 -0.044 

Aver. 
%diff. 

  -0.148   -0.123 
 

In Table 4.35, the values of the edge moment in x- direction obtained from the 

present program were compared with those obtained by Ibearugbulem et al. 

(2014) for the same aspect ratios. The comparison gave the percentage 

differences as    –0.23%, -0.17%,   -0.13%, -0.10% and -0.11% respectively. 

These shows that these results are very close to the values they were compared 

with.  

Also, the edge moment in y-direction, Vye, indicates a maximum percentage 

difference of -0.198% at aspect ratio of 1.2. This value is less than 5%, and 

hence it is considered insignificant. It also indicate that the results obtained 

from the program, are lower bound to those obtained by Ibearugbulem. 

Therefore, the program developed in this work, is adequate and useful as an 

easy alternative for analysis of rectangular CCCC plate. 

The comparison of the results of analysis of SSSS and CCCC plates, show that 

deflection, moment and shear force of a simply supported edge are higher than 

those of a clamped edge which reflect a true practical situation. 
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Following the same analytical approach, for SSSS and CCCC plates above, the 

results of the other single panel plates are presented and discussed below. 

Table 4.36: Comparison of coefficients of deflection 'α' obtained from the 
developed CSSS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio         
S = b/a 

 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D; 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D; 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.00282 0.00282 0.00 0.0028 0.00 

1.2 0.00429 0.00429 0.00 0.0043 0.00 

1.5 0.00646 0.00646 0.00 0.0064 0.936 

1.6 0.00713 0.00713 0.00   

2.0 0.00937 0.00937 0.00 0.0093 0.753 

Aver. %diff.   0.00   
 

The values in Table 4.36, were compared with results of pure bending analysis 

for CSSS plate obtained in existing literatures, based on exact and approximate 

methods. The comparison of the results of the deflection coefficients, obtained 

at the center of the plate, from the developed program with those obtained by 

Ibearugbulem et al. (2014), yielded percentage differences of 0.000%, 0.000%, 

0.000%, 0.000% and 0.000% respectively for aspect ratios 1.0, 1.2, 1.5, 1.6, and 

2.0. The average value of percentage difference is 0.000%. This is an indication 

that, these values agree closely. Also, these values obtained from the developed 

proram were compared with those values obtained by Timoshenko and 

Woinowsky-Krieger (1959), and this gave percentage differences are 0.000%, 

0.000%, 0.938%, and 0.753% respectively for aspect ratios of 1.0, 1.2, 1.5 and 

2. This further confirm that, the values obtained from the developed proram are 

very close to the exact values.  

Also, for bending analysis, the coefficient of bending moment, β, obtained from 

the computer program for CSSS plate, was compared in Table 4.37 with those 

obtained by Ibearugbulem et al. (2014). 
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Table 4.37: Comparison of coefficients of bending moment 'β' obtained from 
the developed CSSS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio         

S = b/a 
 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem 
et al.(2014) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ β1 

Present study 
Myc= β1qa2 

 
β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.03718 0.03718 0.00 0.04191 0.04191 0.00 

1.2 0.05185 0.05185 0.00 0.04805 0.04805 0.00 

1.5 0.07236 0.07236 0.00 0.05306 0.05306 0.00 

1.6 0.07843 0.07842 0.013 0.05392 0.05392 0.00 

2.0 0.09837 0.09837 0.00 0.05509 0.05509 0.00 
Aver. 
%diff. 

  0.000   0.00 
 

Furthermore, comparison was made between the values of the moment, Mxc , in 

x-direction, at the center of the plate with those values obtained from the work 

of Ibearugbulem et al. (2014), as indicated in Table 4.37, and the percentage 

differences are 0.000%, 0.000%, 0.000%, 0.013% and 0.000% for the same 

aspect ratios. The average percentage difference is 0.000%.  This indicate that, 

results are absolutely close to those compared with. For moment, Myc, in y-

direction, the percentage differences are 0.000%, 0.000%, 0.000%, 0.000% and 

0.000% for the same aspect ratio under consideration. Also, these show no 

difference at all.  

Table 4.38: Comparison of coefficients of bending moment 'β' obtained from 
the developed CSSS plate program with those of Timoshenko & Woinowsky-
Krieger (1959) 

Aspect 
Ratio;         

 
S = b/a 

 

Present 
study 

Mxc= βqa2 
 

β 

Timoshen & 
Woinowsky-

Krieger(1959) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Timoshen & 
Woinowsky-

Krieger(1959) 
Myc = β1qa2 

 
β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.03718 0.034 8.824 0.04191 0.039 7.692 

1.2 0.05185 0.049 6.122 0.04805 0.044 9.091 

1.5 0.07236 0.069 4.348 0.05306 0.048 10.417 

1.6 0.07843 - - 0.05392 - - 

2.0 0.09837 0.094 4.255 0.05509 0.047 17.02 
Aver. 
%diff. 
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Comparing the values of moments, at the center of the plate with those values 

obtained by Timoshenko and Woinowsky-Krieger(1959) for aspect ratios 1.0, 

1.2, 1.5 and 2,  the percentage differences for moment, Mxc in x-direction, 

yielded 8.824%, 6.122%, 4.348%, and 4.255% respectively. These indicate that 

some of the values are above 5% but still within the acceptable range in 

statistics. And for moment, Myc, in y-direction, the percentage differences for 

are 7.692%, 9.091%, 10.417% and 17.02% for aspect ratios of 1.0, 1.2, 1.5 and 

2 respectively. They are upper bound to the exact values by Timoshenko and 

Woinowsky-Krieger but are also still within the acceptable statistic range. 

Table 4.39: Comparison of coefficients of shear force 'δ' obtained from the 
developed CSSS plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio  
 

 S = b/a 
 

Present study 
Vymax = δ1qa; 

δ2 

Ibearugbulem et al(2014) 
Vymax = δ1qa; 

δ3 

% difference 
100(δ2- δ3)/ δ3 

1.0 0.33800 0.033800 0.00 

1.2 0.29760 0.29760 0.00 

1.5 0.22971 0.22971 0.00 

1.6 0.20876 0.20875 0.005 

2.0 0.14053 0.14053 0.00 

Aver. %diff.   0.00095 
 

 

Also, the coefficients of shear force, δ, obtained from the computer program for 

CSSS plate, were compared in Table 4.39 with those obtained by Ibearugbulem 

et al. (2014). 

In Table 4.39, the percentage differences between the values of shear force in y-

direction obtained from the present study with those obtained by Ibearugbulem 

et al. (2014) are insignificant. The maximum percentage difference occur at 

aspect ratio 1.6 and has a value 0.005. 

Therefore, the conclusion is that, the present study Program is satisfactory and 

adequate as a quick way for analyzing rectangular CSSS plate. 
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Table 4.40: Comparison of coefficients of deflection 'α' obtained from the 
developed CSCS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio         
S = b/a 

 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D; 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D; 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.00199 0.00199 0.00 0.00192 3.64 

1.2 0.00330 0.00330 0.00 0.00319 3.448 

1.5 0.00551 0.00551 0.00 0.00531 3.766 

1.6 0.00624 0.00624 0.00 0.00603 3.483 

2.0 0.00886 0.00885 0.113 0.00844 4.976 

Aver. %diff.      
 

 

To valid the results of this new computer program, obtained for CSCS plate, 

comparison was carried out between the values of the new study program with 

results of pure bending analysis for CSCS plate obtainable in some available 

literatures. In table 4.40, comparing the values of the deflection coefficients at 

the center of the plate obtained from the present program with those values 

obtained by  Ibearugbulem et al. (2014), the percentage differences are 0.000% , 

0.000%, 0.000%, 0.000% and 0.113% for aspect ratios  1.0, 1.2, 1.5, 1.6, and 

2.0  respectively. These results agreed closely with those compared with. Also, 

in comparing these values with those obtained from the work of Timoshenko 

and Woinowsky-Krieger(1959) , the percentage difference for the same aspect 

ratios yielded 3.64%, 3.448%, 3.766%, 3.483%, and 4.979% respectively. 

These are all less than 5%, and are acceptable. 

The coefficients of bending moment, β, obtained from the program developed 
for the bending analysis of a CSCS plate, were compared with those of 
Ibearugbulem et al. (20114) in Table 4.41. 
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Table 4.41: Comparison of coefficients of bending moment 'β' obtained from 
the developed CSCS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio         

S = b/a 
 

Present 
study 

Mxc= βqa2 
 

β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.02863 0.02310 23.94 0.03754 0.03755 -0.027 

1.2 0.04268 0.03631 17.543 0.04618 0.04619 -0.022 

1.5 0.06469 0.05787 11.785 0.05508 0.05508 0.00 

1.6 0.07165 0.06486 10.469 0.05701 0.05701 0.00 

2.0 0.09563 0.08945 6.909 0.06092 0.06091 0.016 
Aver. 
%diff. 

  14.129    
 

For the moment at the center of CSCS plate, the comparison indicates that the 

percentage difference between the values of the moments, Mxc, at the center of 

the plate and those values obtained by Ibearugbulem et al.(2014), yielded 

23.94%, 17.543%, 11.785%, 10.469% and 6.909% for the same aspect ratios. 

And the average percentage difference is 14.129%. Even though, this is above 

5% and upper bound but the range is acceptable in statistics. This difference 

may be as a result of approximation used in the computation based on manual 

approach. For moment, Myc, considered in the y-direction, the percentage 

differences are -0.027%, -0.022%, 0.000%, 0.000%, and 0.016% respectively. 

Since the differences, are insignificant, the values can be very close to each 

other.  

Table 4.42: Comparison of coefficients of bending moment 'β' obtained from 
the developed CSCS plate program with those of Timoshenko and Woinowsky-
Krieger (1959) 

Aspect 
Ratio         

 
S = b/a 

 

Present 
study 

Mxc= βqa2 
 

β 

Timoshen & 
Woinowsky-

Krieger(1959) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Timoshen & 
Woinowsky-

Krieger(1959) 
Myc = βqa2 

 
β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.02863 0.0244 17.336 0.03754 0.0332 13.072 

1.2 0.04268 0.0376 22.819 0.04618 0.0400 15.450 

1.5 0.06469 0.0585 10.581 0.05508 0.0460 19.739 

1.6 0.07165 0.0650 10.231 0.05701 0.0469 21.557 

2.0 0.09563 0.0869 10.046 0.06092 0.0474 28.523 
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Aver. 
%diff. 

     19.668 
 

Also, when these same values were compared with those values obtained by 

Timoshenko and Woinowsky-Krieger(1959),  the percentage differences for for 

moment, Mxc, x-direction are 17.336%, 22.819%, 10.581%, 10.231% and 

10.046% respectively, with an average percentage value of 14.20% . This 

average percentage is above 5%, nevertheless, it is acceptable in statistics. And 

for moment, Myc, considered in y-direction, the percentage differences, yielded 

3.072%, 15.450%, 19.739%, 21.557% and 28.523% respectively, with an 

average percentage difference value of 19.668%. Even though, the value is 

above 5%, but is acceptable in statistics as well. 

 
Table 4.43: Comparison of coefficients of shear force 'δ' obtained from the 
developed CSCS plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio   
 

S = b/a 
 

Present study 
Vymax = δ1qa; 

δ2 

Ibearugbulem et al(2014) 
Vymax = δ1qa; 

δ3 

% difference 
100(δ2- δ3)/ δ3 

1.0 0.38175 0.38187 -0.031 

1.2 0.36671 0.36679 -0.022 

1.5 0.31362 0.31364 -0.638 

1.6 0.29268 0.29269 -3.417 

2.0 0.21251 0.21247 0.019 

Aver. %diff.    

 

Also, in comparing the results of the shear forces, Vy, considered in y-diection,  

from the present study with those  results obtained by Ibearugbulem et al.(2014) 

Table 4.43, for the same aspect ratios, the percentage differences are  -0.031%, -

0.022%, -0.638%, -3.417% and  0.019% respectively. These indicate that, the 

results are close to each other. It also, indicate that, as the aspect ratio increased 

shear force decreases. 

The coefficients of the edge moment obtained from this new program was 
compared with those obtained by Ibearugbulem et al. (2014) in Table 4.44. 
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Table 4.44 Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CSCS plate program with those of Ibearugbulem et al. (2014)  

Aspect Ratio       
 

   S = b/a 
 

Present study 
Mye = β1qa2 

 
β 2 

Ibearugbulem et al.(2013) 
Mye = β1qa2 

β3 

% difference 
100(β2- β3)/ β3 

1.0 -0.06363 -0.06365 -0.031 
1.2 -0.07334 -0.07336 -0.027 
1.5 -0.07841 -0.07841 0.00 
 1.6 -0.07805 -0.07805 0.00 
2.0 -0.07084 -0.07082 0.028 

Aver. %diff.    
 

 In Table 4.44, comparison was made of the results of the  edge moment, Mye, 

considered in y- direction, obtained from the new program with those obtained 

by Ibearugbulem et al. (2014), the percentage differences  are -0.031%,  -

0.027%,   -0.000%, 0.000% and  0.028% respectively. These indicate that, the 

values are close to the values compared with. Also, it has shown from the 

results that, a simply supported edge does not carry moment. 

 

Therefore, the conclusion that, the present study Program is adequate, and a 

quick means for obtaining the results of CSCS rectangular plate. 

Table 4.45: Comparison of coefficients of deflection 'α' obtained from the 
developed CCSS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio      
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et al.(2014) 
Wmax = αqa4/D; 

 

 α1 

% difference 
100(α- α1)/ α1 

1.0 0.00210 0.00210 0.00 

1.2 0.00290 0.00290 0.00 

1.5 0.00386 0.00386 0.00 

1.6 0.00411 0.00411 0.00 

2.0 0.00486 0.00486 0.00 

Aver. %diff.    
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For CCSS plate, the coefficients of the deflection at the center of the plate, 

obtained from the new program in Table 4.45, were compared with results of 

pure bending analysis for CCSS plate, obtained by some scholars in order to 

validate the results. In comparing the values of the deflection coefficients at the 

center of the plate, obtained from the present program with those obtained by 

Ibearugbulem et al. (2014), the percentage difference for aspect ratios 1.0, 1.2, 

1.5, 1.6, and 2.0 are   0.000%, 0.000%, 0.000%, 0.000% and 0.000% 

respectively. These values agree to the fact that, the results are close. This also, 

demonstrate the accuracy of the program. 

Table 4.46: Comparison of coefficients of bending moment 'β' obtained from 
the developed CCSS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio;         

 
S = b/a 

 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.03277 0.03277 0.00 0.03277 0.03277 0.00 

1.2 0.04203 0.04203 0.00 0.03459 0.03459 0.00 

1.5 0.05247 0.05246 0.019 0.03446 0.03446 0.00 

1.6 0.05511 0.05510 0.018 0.03407 0.03406 0.029 

2.0 0.06266 0.06266 0.00 0.03206 0.03206 0.00 
Aver. 
%diff. 

      
 

Furthermore, inTable 4.46, the comparison between the values of the moments; 

Mxc and Myc at the center of the plate and those results obtained by 

Ibearugbulem et al. (2014), for the same aspect ratios, indicate that, the 

percentage differences are 0.000%, 0.000%, 0.019%, 0.018% and 0.000% for 

moment, Mxc, considered in x-direction. The percentage differences are less than 

5%, and indicate the absolute closeness of the values. For moment, Myc, 

considered in y-direction, the percentage differences yielded 0.000%, 0.000%, 

0.000%, 0.029%, and 0.000% respectively. These values show that, there are 

very close.  
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Table 4.47: Comparison of coefficients of shear force 'δ' obtained from the 
developed CCSS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio         

S = b/a 
 

Present study 
Vxmax = δqa; 

 
δ 

Ibearugbulem 
et al(2014) 
Vxmax = δqa; 

δ1 

% difference 
100(δ- δ1)/ δ1 

Present 
study 

Vymax = δ1qa; 
δ2 

Ibearugbulem 
et al(2014) 

Vymax = δ1qa; 
δ3 

% 
difference 

100(δ2- δ3)/ 
δ3 

1.0 0.25210 0.25209 0.004 0.25210 0.25209 0.004 

1.2 0.34785 0.34784 0.003 0.20130 0.20130 0.00 

1.5 0.46293 0.46292 0.002 0.13716 0.13716 0.00 

1.6 0.49326 0.49324 0.004 0.12042 0.12042 0.00 

2.0 0.58292 0.58290 0.003 0.07287 0.07286 0.014 
Aver. 
%diff. 

      
 

Also, in comparing the results of the shear forces from the present study with 

those obtained by Ibearugbulem et al. (2014) as indicated in Table 4.47. For 

shear force, Vx, considered in x-direction, the percentage differences are 

0.004%, 0.003%, 0.002%, 0.004% and 0.003% respectively.  An indication of 

how close the values are to each other. And considering shear forec, Vy, in y-

direction, the percentages give 0.004%, 0.000%, 0.000%, 0.000% and 0.014% 

for the same aspect ratios under consideration. Also, this gives the indication 

that, the values are very close.  

The coefficients of the edge moment, β, obtained from the computer program, 
were compared with those obtained by Ibearugbulem et al. (2014), as shown in 
Table 4.48. 

Table 4.48: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CCSS plate program with those of Ibearugbulem et al. (2014)  

Aspect Ratio  
 

S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.05042 -0.05042 0.00 

1.2 -0.06957 -0.06957 0.00 

1.5 -0.09259 -0.09258 0.011 

 1.6 -0.09865 -0.09865 0.00 

2.0 -0.11658 -0.11658 0.00 

Aver. %diff.    
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In addition, Table 4.48 contains the comparison between the results of the edge 

moment, Mxe, considered in x- direction from this computer program with those 

obtained by Ibearugbulem et al. (2014), for the same aspect ratios under 

consideration. The percentage differences are 0.000%, 0.000%, 0.011%, 

0.000% and 0.000% respectively. These indicate the closeness of the values to 

those compared with. Thus, the implication here is that, the present study 

Program, is a quick and useful program to obtain results for analysis of 

rectangular CCSS plate. 

Table 4.49: Comparison of coefficients of deflection 'α' obtained from the 
developed CCCS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio    
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et al.(2014) 
Wmax = αqa4/D; 

 

 α1 

% difference 
100(α- α1)/ α1 

1.0 0.00161 0.00159 1.258 

1.2 0.00243 0.00241 0.830 

1.5 0.00355 0.00352 0.852 

1.6 0.00387 0.00383 1.044 

2.0 0.00482 0.00479 0.626 

Aver. %diff.   0.922 
 

In other to authenticate the results obtained from the new program, the 

coefficients of the deflection at the center of the plate obtained from this new 

program for CCCS plate, were compared with those coefficients obtained from 

Ibearugbulem et al. (2014), as indicated in Table 4.49. The comparison show 

that, the percentage difference for aspect ratios  1.0, 1.2, 1.5, 1.6, and 2.0  are  

1.258% , 0.830%, 0.852%, 1.044% and 0.626% respectively, with an average 

value of 0.922%. This implies that the results of this study agree closely to those 

compared with. 
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Table 4.50: Comparison of coefficients of bending moment 'β' obtained from 

the developed CCCS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio         

S = b/a 
 

Present 
study 

Mxc= βqa2 
 

β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.02700 0.02673 1.010 0.03150 0.03119 0.994 

1.2 0.03728 0.03690 1.036 0.03577 0.03540 1.045 

1.5 0.05019 0.04971 0.966 0.03804 0.03767 0.982 

1.6 0.05363 0.05314 0.922 0.03807 0.03772 0.928 

2.0 0.06365 0.06318 0.744 0.03665 0.03638 0.742 
Aver. 
%diff. 

  0.934   0.938 
 

Furthermore, the percentage difference between the results of the moments, Mxc 

and Myc at the center of the plate with values obtained by Ibearugbulem et al. 

(2014), for the same aspect ratios under consideration, presented in Table 4.50, 

indicate that, the percentage differences are 1.010%, 1.036%, 0.966%, 0.922% 

and 0.744% with an average value of 0.934 for moment, Mxc, considered in x-

direction. These values are less than 5%, and inplies that, the difference are 

insignificant. And considering moment, Myc, in y-direction, the percentage 

differences are 0.994%, 1.045%, 0.982%, 0.928%, and 0.742% respectively, 

which implies that the results are close. 

Moreso, the coefficient of the shear force, δ, obtained from this work were 

compared with those obtained by Ibearugbulem et al. (2014) as shown in Table 

4.51.  
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Table 4.51: Comparison of coefficients of shear force 'δ' obtained from the 
developed CCCS plate program with those of Ibearugbulem et al. (2014). 

Aspect 
Ratio;    

 
 S = b/a 

 

Present 
study 

Vxmax = δqa; 
δ 

Ibearugbulem 
et al(2014) 
Vxmax = δqa; 

δ1 

% difference 
100(δ- δ1)/ δ1 

Present 
study 

Vymax =δ1qa; 
δ2 

Ibearugbulem 
et al(2014) 

Vymax = δ1qa; 
δ3 

% 
difference 

100(δ2- δ3)/ 
δ3 

1.0 0.19283 0.19095 0.985 0.30854 0.30552 0.988 

1.2 0.29175 0.28875 1.039 0.27013 0.26736 1.036 

1.5 0.42615 0.42206 0.969 0.20203 0.20009 0.970 

1.6 0.46383 0.45958 0.925 0.18118 0.17952 0.925 

2.0 0.57864 0.57440 0.738 0.11573 0.11488 0.740 

Aver. 
%diff. 

  0.931   0.932 
 

Based on the comparison, the percentage differences obtained for the moment, 

Vx, are 0.985%, 1.039%, 0.969%, 0.925% and 0.738%, with an average value of 

0.931%. These indicate that, the percentage differences are negligible, and 

hence can be considered close to each other. While the percentage differences 

for moment, Vy, in y- direction, are 0.988%, 1.036%, 0.970%, 0.925%, and 

0.740% respectively, this indicates the closeness of the results.  

Table 4.52: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CCCS plate program with those of Ibearugbulem et al. (2014)  

Aspect Ratio;        
 
 

 S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.03857 -0.03819 0.995 

1.2 -0.05835 -0.05775 1.039 

1.5 -0.08523 -0.08441 0.971 

 1.6 -0.09277 -0.09192 0.925 

2.0 -0.1157 -0.11488 0.714 

Aver. %diff.   0.929 
 

Moreover, in Table 4.52, comparison was made between the results of the edge 

moments in x- direction, obtained from the present program with those obtained 

by Ibearugbulem et al. (2014). The results indicate that the percentage 

differences are 0.995%, 1.039%, 0.971%, 0.925% and 0.714% respectively with 
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an average of 0.929%. The implication is that, the results are close and 

satisfactory.  The edge moment increased with increase in aspect ratio in x- 

direction. All the moments are negative meaning they act in opposite direction 

to the assumed direction. 

 

Thus, the implication is that, the present study Program, is a reliable and faster 

approach for analysis of rectangular CCCS plate. Also, the program, gives 

flexibility in usage by the user in terms of varying parameters as the practical 

problems present themselves. 

Table 4.53: Comparison of coefficients of deflection 'α' obtained from the 
developed SSFS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio;         
 
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D; 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D; 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.01105 0.01282 -13.807 0.01286 -14.075 

1.2 0.01250 0.01403 -10.905 0.01384 -9.682 

1.5 0.01393 0.01511 -7.809 0.01462 -4.720 

1.6 0.01428 0.01535 -6.971 - - 

2.0 0.01524 0.01601 -4.809 0.01507 1.128 

Aver. %diff.   -8.860  -6.837 
 

In Table 4.53, comparison of the deflection coefficients, α, at the free edge of 

the plate, obtained from the present study with those obtained by Ibearugbulem 

et al. (2014), yielded percentage difference is -13.807%,-10.905%, -7.809%, -

6.971% and -4.809% respectively for aspect ratios 1.0, 1.2, 1.5, 1.6, and 2.0. 

The average percentage difference was -8.860%. These values are lower bound 

to those compared with, and the average is above 5%. However, the results are 

within the acceptable limit in statistics.  

Comparing the same values with those of Timoshenko and Woinowsky-Krieger 

(1959), gave percentage difference of -14.075%, -9.682%, -4.720%, and 

1.128% respectively for aspect ratios 1.0, 1.2, 1.5, and 2.0, and with an average 
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percentage difference of -6.837%. This value is sligtly above 5%, but is within 

acceptable limit in statistics.  

Table 4.54: Comparison of coefficients of bending moment 'β' obtained from 
the developed SSFS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio;         

 
 

     S = b/a 
 

Present 
study 

Mxc= βqa2 
 

β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.08007 0.0928 -13.718 0.04293 0.0369 16.341 

1.2 0.08843 0.1015 -12.877 0.04138 0.0403 2.680 

1.5 0.09659 0.1093 -11.629 0.03957 0.0434 -8.825 

1.6 0.09853 0.1111 -11.314 0.03910 0.0441 -11.338 

2.0 0.10397 0.1159 -10.293 0.03771 0.0460 -18.022 
Aver. 
%diff. 

  -11.966   -3.833 
 

Furthermore, the coefficients of bending moments, β, obtained from the 

program developed for bending analysis of SSFS plate, were compared with 

those of Ibearugbulem et al. (2014) in Table 4.54. The comparison indicates that 

the percentage difference between values of the moments, Mxc, considered in x-

direction, at the center of the plate and those obtained by Ibearugbulem et al. 

(2014), are -13.718%, -12.877%, -11.629%, -11.314% and -10.293%, for the 

same aspect ratio. And the average percentage difference is -11.966%. All 

values are above than 5%, and are lower bound solutions to those compared 

with. This indicates that, the results even though above 5%, are within 

acceptable range in statistics. For the values of moment, Myc, considered in y-

direction at the center of centage of the plate, the percentage differences are 

16.341%, 2.680%, -8.825%, -11.338%, and -18.022% respectively. These 

values are acceptable even though there are above 5%.  These differences arise 

from the fact that, so many assumptions may have been used in the manual 

computation of results, to simplify the process, since plates with free edge do 

not follow exactly, the derivations as the plates with no free edge. 
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Table 4.55: Comparison of coefficients of bending moment 'β' obtained from 
the developed SSFS plate program with those of Timoshenko and Woinowsky-
Krieger (1959). 

Aspect 
Ratio;    

 
S = b/a 

 

Present 
study 

Mxc= βqa2 
 

β 

Timoshen & 
Woinowsky-

Krieger(1959) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Timoshen & 
Woinowsky-

Krieger(1959) 
Myc = βqa2 

 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.08007 0.080 0.00 0.04293 0.039 10.077 

1.2 0.08843 0.090 -1.778 0.04138 0.041 0.927 

1.5 0.09659 0.101 -4.366 0.03957 0.042 -5.785 

1.6 0.09853 - - 0.03910 - - 

2.0 0.10397 0.0.113 -7.799 0.03771 0.041 -8.024 
Aver. 
%diff. 

  -3.486   -0.701 
 

To further validate the results of this computer program, these same values were 

compared with those obtained by Timoshenko and Woinowsky-Krieger(1959), 

in Table 4.55, and the percentage differences for moment, Mxc, considered in x-

direction are 0.000%, -1.778%, -4.366% and -7.799% respectively for aspect 

ratios 1.0, 1.2, 1.5, and 2.0. And the average percentage diference of -3.486%. 

These values are less than 5%, and indicate that the values are closer than those 

of Ibearugbulem et al. Also, considering moment, Myc, in y-direction, the 

perecentage differences are 10.077%, 0.927%, -5.785% and -8.024% 

respectively, with an average percentage difference of -0.701%. This indicates 

that the values are very close to each other. The insignicant differences affirm 

the fact that these values are adequate. 

Table 4.56: Comparison of coefficients of shear force 'δ' obtained from the 
developed SSFS plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio;     
 

S = b/a 
 

Present study 
Vxmax = δqa; 

δ 

Ibearugbulem et 
al(2014) 

Vxmax = δqa; 
δ1 

% difference 
100(δ- δ1)/ δ1 

1.0 0.40839 0.4731 -13.678 

1.2 0.42293 0.5175 -18.274 

1.5 0.43570 0.5574 -21.834 

1.6 0.43857 0.5664 -22.569 

2.0 0.44626 0.5907 -24.452 
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Aver. %diff.   -20.16 

 

Also, in table 4.56, comparing the resuts of the shear forces, Vx, considered in 

x-direction, obtained from the present program with those obtained by 

Ibearugbulem et al. (2014), the percentage differences are -13.678%, -18.274%, 

-21.834%, -22.569% and -24.452% respectively, with an average percentage 

difference of -20.16% . This value is above 5%, but acceptable in statistics. 

Therefore, the present study Program, can be considered adequate, and as a 

quick alternative for analysis of rectangular SSFS plate. 

Table 4.57: Comparison of coefficients of deflection 'α' obtained from the 
developed SCFS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio;        
 
 

S = b/a 
 

Present study 
Wmax = αqa4/D 

 

α 

Ibearugbulem et al.(2014) 
Wmax = αqa4/D 

 

 α1 

% difference 
100(α- α1)/ α1 

1.0 0.00547 0.00672 -18.601 

1.2 0.00586 0.00680 -13.824 

1.5 0.00621 0.00685 -9.343 

1.6 0.00628 0.00686 -8.455 

2.0 0.00650 0.00688 -5.523 

Aver. %diff.   -11.14 
 

Table 4.57, contains the comparison between the results obtained from this new 

program with those results obtained for SCFS plate by existing research work. 

The comparison indicates that, the percentage difference between the values of 

the deflection coefficients at the free edge of the plate obtained from the new 

study program with those obtained by Ibearugbulem et al. (2014), are   -

18.601%, -13.824%, -9.343%, -8.455% and -5.523% respectively for aspect 

ratios 1.0, 1.2, 1.5, 1.6, and 2.0. And the average percentage difference of -

11.149%. This is lower bound and acceptable.  
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Furthermore, the coefficients of bending moment, β, obtained from the program 

developed for bending analysis of a SCFS plate were compared with those of 

Ibearugbulem et al. (2014), in Table 4.58. 

 

Table 4.58: Comparison of coefficients of bending moment 'β' obtained from 
the developed SCFS plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio;   
              
              S = b/a 

 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxc = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 0.04877 0.0599 -18.581 

1.2 0.05123 0.0606 -15.462 

1.5 0.05339 0.0610 -12.475 

1.6 0.05387 0.0611 -11.833 

2.0 0.05517 0.0613 -10.000 

Aver. %diff.   -13.670 
 

For the moments, Mxc, considered at the center of the plate, the comparison 

indicates that the percentage difference between the results of this computer 

program and those obtained by Ibearugbulem et al.(2014), are -18.581%,    -

15.462%, -12.475%, -11.833% and -10.000%. And the average percentage 

value of -13.670%. These are higher than 5%, and lower bound to those 

compared with, but acceptable in statistics.  

Table 4.59: Comparison of coefficients of shear force 'δ' obtained from the 
developed SCFS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio  
 

S = b/a; 
 

Present study 
Vxmax = δqa; 

δ 

Ibearugbulem et 
al(2014) 

Vxmax = δqa; 
δ1 

% difference 
100(δ- δ1)/ δ1 

1.0 0.45688 0.5611 -18.574 

1.2 0.48935 0.5677 -13.801 

1.5 0.51834 0.5718 -9.349 

1.6 0.52489 0.5725 -8.316 

2.0 0.54253 0.5740 -5.483 

Aver. %diff.   -11.483 
 



104 
 

Also, comparing the values of the shear forces, Vx, considered in x-direction, 

obtained from the present work with those obtained by Ibearugbulem et 

al.(2014) for  the same aspect ratios, the percentage differences are -18.574%, -

13.801%, -9.349%, -8.316% and -5.483% respectively. These values are lower 

bound to those compared with, and are satisfactory.  

Table 4.60: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed SCFS plate program with those of Ibearugbulem et al. (2014)  

Aspect Ratio;    
 

S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.09138 -0.1122 -18.556 
1.2 -0.09787 -0.1135 -13.771 
1.5 -0.10367 -0.1144 -9.379 
 1.6 -0.10498 -0.1145 -8.314 
2.0 -0.10851 -0.1148 -5.479 

Aver. %diff.   -11.100 
 

 In addition, comparing the values of the edge moment, Mxe, considered in y- 

direction, obtained from the present study with those obtained by Ibearugbulem 

et al. (2014), for the same aspect ratios,  the percentage differences are -

18.556%, -13.771%, -9.379%, -8.314% and -5.479% respectively. This 

percentage differences are considered acceptable. Hence, the present study 

Program is a reliable and adequate program, for quicker analysis of rectangular 

SCFS plate. 

Table 4.61: Comparison of coefficients of deflection 'α' obtained from the 
developed CSFS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio   
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D; 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D; 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.00884 0.0101 -12.475  - 

1.2 0.01094 0.0122 -10.328   

1.5 0.01301 0.0141 -7.730 0.0141 -7.773 

1.6 0.01350 0.0145 -6.897   

2.0 0.01482 0.0156 -5.000 0.0150 -1.2 

Aver. %diff.   -8.486   
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The coefficients of deflection, α, obtained from the developed CSFS plate 

program were compared with those obtained by Ibearugbulem et al. (2014) in 

Table 4.61. The comparison shows that, the percentage differences are -

12.475%, -10.328%, -7.730%, -6.897% and -5.000% respectively for aspect 

ratios 1.0, 1.2, 1.5, 1.6, and 2.0.  These values are lower bound to those 

compared with and are considered satisfactory.  

Table 4.62: Comparison of coefficients of bending moment 'β' obtained from 
the developed CSFS plate program with those of Ibearugbulem et al.(2014). 

Aspect Ratio;        
 

  S = b/a 
 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxc = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 0.06167 0.0702 -12.151 

1.2 0.07352 0.0851 -13.608 

1.5 0.08478 0.0986 -14.016 

1.6 0.0873 0.1015 -13.016 

2.0 0.09417 0.1089 -13.562 

Aver. %diff.   -13.558 
 

 

Furthermore, Table 4.62, contains comparison between the cofficients of 

bending moment, β, considered at the center of the plate, and those obtained by 

Ibearugbulem et al. (2014). The comparison show that, for moments, Mxc, the 

percentage differences are -12.151%, -13.608%, -14.016%, -13.016% and -

13.526%, with an average value of -13.458%. These are are above than 5%, and 

lower bound but acceptable in statistics.  

Therefore, the present study Program, is adequate and an easy way of analyzing 

CSFS rectangular plate. 
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Table 4.63: Comparison of coefficients of deflection 'α' obtained from the 
developed CCFS plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio    
 

S = b/a 
 

Present study 
Wmax = αqa4/D; 

 

α 

Ibearugbulem et al.(2014) 
Wmax = αqa4/D; 

 

 α1 

% difference 
100(α- α1)/ α1 

1.0 0.00485 0.0053 -8.491 

1.2 0.00548 0.0058 -5.517 

1.5 0.00601 0.0063 -4.603 

1.6 0.00612 0.0064 -4.375 

2.0 0.00641 0.0066 -2.879 

Aver. %diff.   -5.173 
 

Also, the results of shear force coefficients, α, at the edge of the plate obtained 

from the present study were compared with results of pure bending analysis for 

CCFS plate obtained by research work of Ibearugbulem et al. (2014). From the 

comparison as indicated in Table 4.63, the percentage differences recorded 

between the values are -8.491%, -5.517%, -4.603%, -4.375% and -2.879% 

respectively, with an average value of -5.173%, for the same aspect ratios. 

These values are lower bound to those compared with, and are satisfactory.  

 
Table 4.64: Comparison of coefficients of bending moment 'β' obtained from 
the developed CCFS plate program with those of Ibearugbulem et al. (2014) 

Aspect 
Ratio         

 
S = b/a 

 

Present 
study 

Mxc= βqa2 
 

β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ 

β1 

Present 
study 

Myc= β1qa2 
 

β 2 

Ibearugbulem 
et al.(2013) 
Myc = β1qa2 

β3 

% difference 
100(β2- β3)/ 

β3 

1.0 0.04127 0.0448 -7.879 0.02451 0.0205 19.561 

1.2 0.04524 0.0497 -8.974 0.02309 0.0228 1.272 

1.5 0.04834 0.0534 -9.476 0.02120 0.0245 -13.469 

1.6 0.04903 0.0542 -9.539 0.02069 0.0249 -16.908 

2.0 0.05063 0.0561 -9.750 0.0192 0.0257 -25.292 

Aver. 
%diff. 

  -9.124   -6.967 
 

 

Furthermore, in table 4.64, the percentage difference between results of the 

moments, Mxc, and those values obtained by Ibearugbulem et al.(2014), at the 

center of the plate, for the same aspect ratios, shows that, the percentage 
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differences are -7.879%, -8.974%, -9.476%, -9.539% and -9.750%, with an 

average value of -9.124%. These values are slightly above 5%, and acceptable 

in statistics. And for moment, Myc, the percentage differences are 19.561%, 

1.272%, -13.469%, -16.908%, and -25.292% respectively, with an average 

value of -6.967%. These are acceptable as well.  

Table 4.65: Comparison of coefficients of shear force 'δ' obtained from the 
developed CCFS plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio  
 

 S = b/a 
 

Present study 
Vxmax = δqa 

δ 

Ibearugbulem et 
al(2014) 

Vxmax = δqa 
δ1 

% difference 
100(δ- δ1)/ δ1 

1.0 0.37269 0.4043 -7.818 
1.2 0.42100 0.4485 -6.132 
1.5 0.46183 0.4826 -4.304 
1.6 0.47058 0.4895 -3.865 
2.0 0.49308 0.5062 -2.592 

Aver. %diff.   -4.942 
 

Also, in table 4.65, comparing the results of the shear forces, Vx,  obtained from 

the new program with those obtained by Ibearugbulem et al. (2014), shows that, 

the percentage differences  are -7.818%, -6.132%, -4.304%, -3.865% and  -

2.592% respectively.  These values are below 5%. The values are lower bound 

to those compared with. The maximum difference occur at an aspect ratio of 

1.0, and started dcreasing as the aspect ratio increase. The results indicate 

insignificant differences with those compared with and are satisfactory. 

Table 4.66: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CCFS plate program with those of Ibearugbulem et al. (2014)  

Aspect Ratio    
 

S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.07454 -0.0809 -7.862 

1.2 -0.0842 -0.0897 -6.132 

1.5 -0.09237 -0.0965 -4.280 

 1.6 -0.09412 -0.0979 -3.861 

2.0 -0.09862 -0.1012 -2.549 

Aver. %diff.   -4.937 
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In addition, Table 4.66, contains the comparison between the results of the edge 

moment, Mxe, considered in x- direction, obtained from the present study with 

those obtained by Ibearugbulem et al. (2014). The percentage differences 

obtained from the comparison are -7.862%, -6.132%, -4.280%, -3.861% and -

2.549% respectively.And an average percentage difference of -4.937%. This is 

below 5%. This implies that, the results are close and satisfactory. Therefore, 

we can say that, the present study program, is adequate and quicker for analysis 

of rectangular CCFS plate. 

Table 4.67: Comparison of coefficients of deflection 'α' obtained from the 
developed SCFC plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio   
 

S = b/a 
 

Present study 
Wmax = αqa4/D 

 

α 

Ibearugbulem et al.(2014) 
Wmax = αqa4/D 

 

 α1 

% difference 
100(α- α1)/ α1 

1.0 0.00305 0.0032 -4.688 

1.2 0.00317 0.0033 -3.939 

1.5 0.00327 0.0033 -0.909 

1.6 0.00329 0.0034 -3.235 

2.0 0.00335 0.0034 -1.471 

Aver. %diff.   -2.848 
 

In table 4.67, comparison of the deflection coefficients, α, at the edge of the 

plate, obtained from the present study with those obtained by Ibearugbulem et 

al. (2014), yielded percentage differences of  -4.688% , -3.939%, -0.909%,        

-3.235% and -1.471% respectively, with an average value of -2.848%. These 

values indicate that they agree closely with each other. The results also indicate 

that, as the aspect ratio increases deflection also increased. 
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Table 4.68: Comparison of coefficients of bending moment 'β' obtained from 
the developed SCFC plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio  
 

S = b/a 
 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxc = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 0.03571 0.0374 -4.637 

1.2 0.036524 0.0383 -4.615 

1.5 0.03720 0.0390 -4.615 

1.6 0.03734 0.0392 -4.745 

2.0 0.03772 0.0396 -4.747 

Aver. %diff.   -4.653 
 

 

Furthermore, in table 4.68, the percentage difference between the results of the 

moments, Mxc, at the center of the plate with values obtained by Ibearugbulem 

et al.(2014), shows that, the percentage differences are -4.637%,-4.615%,           

-4.615%, -4.745% and -4.747%, with an average value of -4.653%. These 

percentages are all below 5%, and lower bound and are satisfactory.  The 

deflection increased as aspect ratio increases. 

Table 4.69: Comparison of coefficients of shear force 'δ' obtained from the 
developed program for SCFC plate with those of Ibearugbulem et al. (2014). 

Aspect Ratio   
 

 S = b/a 
 

Present study 
Vxmax = δqa 

δ 

Ibearugbulem et al(2014) 
Vxmax = δqa 

δ1 

% difference 
100(δ- δ1)/ δ1 

1.0 0.40781 0.4267 -4.427 

1.2 0.42340 0.4373 -3.179 

1.5 0.43654 0.4459 -2.099 

1.6 0.43941 0.4477 -1.852 

2.0 0.44700 0.4524 -1.194 

Aver. %diff.   -2.550 
 

Also, comparing the results of the shear forces, Vx, obtained from the present 

study with those obtained by Ibearugbulem et al. (2014) in Table 4.69. The 

percentage differences are -4.427%, -3.179%, -2.099%, -1.852% and -1.194% 

respectively. And an average average percentage difference of -2.550%. All the 

values are below 5%, and are lower bound to those compared with. Hence, are 

considered adequate.  
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Table 4.70: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed program SCFC plate with those of Ibearugbulem et al. (2014)  

Aspect Ratio   
 

S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.06797 -0.0711 -4.402 

1.2 -0.07057 -0.0729 -3.196 

1.5 -0.07276 -0.0743 -2.073 

 1.6 -0.07324 -0.0746 -1.823 

2.0 -0.07450 -0.0754 -1.194 

Aver. %diff.   -2.538 
 

 In addition, comparing coefficients of the edge moment, β, in x- direction, 

obtained from the present study with those obtained by Ibearugbulem et al. 

(2014), as indicated in Table 4.70. The comparison gave the percentage 

differences  as -4.402%, -3.196%, -2.073%, -1.823% and  -1.194% respectively, 

with an average percentage difference of -2.538%. This is below 5%, and 

considered satisfactory. 

Therefore, the results of the present study program, are reliable and adequate, 

and offer a quicker way of obtaining results of rectangular SCFC plate. 

Table 4.71: Comparison of coefficients of deflection 'α' obtained from the 
developed CCFC plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio         
S = b/a 

 

Present study 
Wmax = αqa4/D 

 

α 

Ibearugbulem et 
al.(2014) 

Wmax = αqa4/D 
 

 α1 

% difference 
100(α- α1)/ α1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D 
 

 α2 

% difference 
100(α- α2)/ α2 

1.0 0.00286 0.00299 -4.348 0.00333 -14.11 

1.2 0.00306 0.00316 -3.165 - - 

1.5 0.00321 0.00329 -2.432 0.00335 -4.179 

1.6 0.00325 0.00331 -1.813 - - 

2.0 0.00333 0.00337 -1.187 - - 

Aver. %diff.   -2.589   
 

Comparison was carried out in Table 4.71, between the results obtained from 

the developed CCFC plate program and those results of pure bending analysis 

for CCFC plate obtained by some researchers from existing literatures. 
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Comparing the values of the deflection coefficient at the free edge of the plate, 

obtained from the present study with those obtained by Ibearugbulem et al. 

(2014), the percentage differences are -4.348%, -3.165%, -2.432%, -1.813% and 

-1.187% respectively, for aspect ratios 1.0, 1.2, 1.5, 1.6, and 2.0. And an 

average percentage difference of -2.589%. This indicates that the results agree 

closely. The reason for some slight differeces in these results may be as a resut 

of some approximations and rigorous manually computations.  

Table 4.72: Comparison of coefficients of bending moment 'β' obtained from 
the developed CCFC plate program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
 

S = b/a 
 

Present study 
Mxc= βqa2 

 
β 

Ibearugbulem 
et al.(2013) 
Mxc = βqa2 

 
β1 

% difference 
100(β- β1)/ β1 

Timoshenko et 
al.(1959) 

Wmax = αqa4/D 
 

 α2 

 
% difference 
100(β- β1)/ β1 

1.0 0.03165 0.033150 -4.525 0.0317 0.00 

1.2 0.03310 0.035052 -5.569 - - 

1.5 0.03412 0.036408 -6.284 0.0402 -15.121 

1.6 0.03432 0.036670 -6.409 - - 

2.0 0.03477 0.037298 -6.778 - - 

Aver. %diff.   -5.913   
 

Furthermore, in Table 4.72, the percentage difference between the results of the 

moment, Mxc, in x-direction, at the center of the plate with values obtained by 

Ibearugbulem et al. (2014), indicate that the percentage differences are -4.525%, 

-5.569%, -6.284%, -6.409% and -6.778%, with an average value of -5.913%. 

These difference are around the neighbourhood of 5%, and are lower bound to 

those compared with. This indicates that the values are close. And comparing 

the same values with those obtained by Timoshenko and Woinowsky-Krieger 

(1959), for moment, Mxc, the percentage differences for aspect ratios 1 and 1.5 

are 0.000% and -15.121% respectively. These indicate that the values for 1 is 

absolutely the same, while that for 1.5 is lower bound and acceptable.  
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Table 4.73: Comparison of coefficients of shear force 'δ' obtained from the 
developed CCFC plate program with those of Ibearugbulem et al. (2014). 

Aspect Ratio 
 

 S = b/a 
 

Present study 
Vxmax = δqa 

δ 

Ibearugbulem et 
al(2014) 

Vxmax = δqa 
δ1 

% difference 
100(δ- δ1)/ δ1 

1.0 0.35146 0.368178 -4.541 

1.2 0.37623 0.389293 -3.356 

1.5 0.39533 0.404357 -2.232 

1.6 0.39923 0.407269 -1.974 

2.0 0.40898 0.414237 -1.269 

Aver. %diff.   -2.674 
 

Also, in Table 4.73, comparing the results of the shear forces, Vx, considered  in 

x-direction, obtained from the present study with those obtained by 

Ibearugbulem et al. (2014), the percentage differences are -4.541%, -3.356%, -

2.232%, -1.974% and -1.269% respectively, with an average of -2.674%. These 

values are less than 5%, and indicate the closeness of the values. 

Table 4.74: Comparison of coefficients of edge moment ‘β’ obtained from the 
developed CCFC plate program with those of Ibearugbulem et al. (2014).  

Aspect Ratio 
 

S = b/a 
 

Present study 
Mxe = βqa2 

 
β 

Ibearugbulem et 
al.(2013) 

Mxe = βqa2 
 

β1 

% difference 
100(β- β1)/ β1 

1.0 -0.05858 -0.06136 -4.531 

1.2 -0.06270 -0.06488 -3.360 

1.5 -0.06589 -0.06739 -2.226 

 1.6 -0.06654 -0.06788 -1.974 

2.0 -0.06816 -0.06904 -1.275 

Aver. %diff.   -2.673 
 

 In addition, in Table 4.74, comparing the values of the edge moment in x- 

direction, obtained  from the present study with those obtained by Ibearugbulem 

et al. (2014), the percentage differences are -4.531%, -3.360%, -2.226%,             

-1.974% and -1.275% respectively, with an average of -2.673%. This indicates 

that the percentage differences are less than 5% and are close to the compared 

values.  

Therefore, the implication is that, the present study program, is adequate and 

quicker to analyze rectangular CCFC plate. 
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It is worth noting that, the manual computations, based on both classical and 

energy approach, make used of approximations to various decimal places for 

various plates. This may have account for some of the little differences in 

results, even though the differences are within acceptable limits. We also 

obersved that, in one way or the other, as the aspect ratio increased, there is 

some convergences or divergence of the values. But within the acceptable 

practical limit of aspect ratio of 1<s<2.5, the results are adequate and 

satisfactory.  

4.2.2 Discussions of the Results of Buckling/Stability Analysis 

In other to validate the results, obtained from this program for stability analysis, 

Tables 4.75 – 4.80 show the comparison of these results with those obtained 

from available literatures, and the discussions are as follows. 

 

Table 4.75: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio; 

 
 S = b/a 

 

SSSS Plate CCCC Plate 

Program 

Nx= n2x ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem 
et al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ 

n3 

1.0 4.003 4.003 0.00 10.943 11.010 -0.61 

1.2 4.137 4.138 -0.024 11.515 11.587 -0.62 

1.5 4.698 4.698 0.00 13.898 13.989 -0.65 

1.6 4.955 4.955 0.00 14.988 15.088 -0.66 

2.0 6.256 6.256 0.00 20.518 20.661 -0.69 

Aver. %diff.   -0.005   -0.646 
 

To validate the results obtained from the program for SSSS and CCCC plates, 

Ttable 4.75 show the comparison of these results with those obtained by 

Ibearugbulem et al. (2014).  

For SSSS plate, for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0, the percentage 

differences have a maximum value of -0.024% at aspect ratio 1.2, while other 
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are 0.00%, with average percentage differences of -0.005%. These values 

indicate an insignificant difference and thus agree very well.  

And for CCCC plate, in the same Table 4.75, were compared with the same 

authors, and the percentage differences are -0.609%, -0.621%, -0.651%, -

0.665% and -0.692%, with an average value of -0.647%. Also, are very close 

and show only insignificant difference. Hence, the implication is that this study 

program is accurate and adequate for analyzing SSSS and CCCC rectangular 

plates. 

 

Following the same analytical procedure, the rest of the other plates’ results are 

compared and discussed as follows: 

Table 4.76: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio; 

 
S = b/a 

 

CSSS Plate CSCS Plate 

Program 

Nx= n2x  ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ 

n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem 
et al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ 

n3 

1.0 5.756 5.755 0.017 8.606 8.619 -0.151 

1.2 5.447 5.447 0.00 7.466 7.478 -0.160 

1.5 5.646 5.646 0.00 6.984 6.996 -0.172 

1.6 5.824 5.824 0.00 7.016 7.028 -0.171 

2.0 6.922 6.921 0.014 7.730 7.745 -0.194 
Aver. 
%diff. 

   0.006   -0.169 
 

In Table 4.76, the values for critical buckling load obtained from the program 

for CSSS plate were compared with those obtained by Ibearugbulem et al. 

(2014), the percentage differences are 0.017%, 0.000%, 0.000%, 0.000% and 

0.014% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. The average 

percentage differences is 0.006%. These values show an insignificant difference 

and thus agree very absolutely. 
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And for CSCS plate in Table 4.76, the values of critical buckling load obtained 

from the program, were compared with the same authors. And the percentage 

differences are -0.151%, -0.160%, -0.172%, -0.171% and -0.194%, with an 

average value of -0.169%.  Also, these values are very close and indicate only 

slight difference which are insignificant. Hence, the implication is that, this 

study program is accurate and useful approach for analyzing CSSS and CSCS 

rectangular plates. 

 

Table 4.77: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio; 

 
S = b/a 

 

CCSS Plate CCCS Plate 

Program 

Nx= n2x ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ 

n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem 
et al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ 

n3 

1.0 6.559 6.559 0.00 9.051 9.053 -0.022 

1.2 6.845 6.845 0.00 8.616 8.617 -0.012 

1.5 8.037 8.037 0.00 9.216 9.218 -0.022 

1.6 8.582 8.582 0.00 9.633 9.635 -0.021 

2.0 11.347 11.347 0.00 12.066 12.068 -0.017 
Aver. 
%diff. 

  0.00   -0.019 
 

From Table 4.77, the results of critical buckling load for CCSS and CCCS plate 

are compared with those of existing research works. The values critical buckling 

load for CCSS plate were compared with   those obtained by Ibearugbulem et 

al. (2014), and the percentage differences are 0.000%, 0.000%, 0.000%, 0.000% 

and 0.000% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. The average 

percentage differences is 0.000%. These results indicate no difference, and thus 

agree very absolutely. 

Also for CCCS plate, values of critical buckling load obtained from the program 

were compared with the same authors in Table 4.77, and the percentage 
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differences are -0.022%, -0.012%, -0.022%, -0.021% and -0.017%,  with an 

average percentage of -0.019%. These are also very close and show only 

insignificant difference. Thus, this implies that this study program, is accurate 

and adequate for analyzing CCSS and CCCS rectangular plates. 

Table 4.78: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014).  

Aspect 
Ratio; 

 
S = b/a 

 

SSFS Plate SCFS Plate 

Program 

Nx= n2x  ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem et 
al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ n3 

1.0 1.562 1.347 15.961 2.682 2.183 22.858 

1.2 1.988 1.773 12.126 3.606 3.107 16.061 

1.5 2.788 2.573 8.356 5.319 4.820 10.353 

1.6 3.095 2.881 7.428 5.977 5.478 9.109 

2.0 4.531 4.316 4.981 9.035 8.536 5.846 

Aver. %diff.   9.771   12.845 
 

In Table 4.78, the results of critical buckling load were compared with available 

literatures to justify them. Those obtained for SSFS plate were compared with 

those obtained by Ibearugbulem et al. (2014), and the percentage differences for 

are 15.961%, 12.126%, 8.356%, 7.428% and 4.981% respectively aspect ratio 

1.0, 1.2, 1.5, 1.6, and 2.0. And an average percentage difference is 9.771%. 

These values show an upper bound to those under comparison, and are little 

above 5% difference but within the acceptable limit in statistics.   

 

Also, from the same Table 4.78, the values of critical buckling load for SCFS 

plate, were compared with the same authors and the percentage differences are 

22.858%, 16.061%, 10.353%, 9.109% and 5.846%, with an average value of 

12.845%. These values are upper bound to those compared with, and are above 

5%, but still falls within statistically acceptable limit. The difference is because 

of some modifications introduced in the derivation of shape function with free 
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edge, which modifies the shape function, and involve more rigourous manual 

computations, that may have increase the error factor. 

Thus, this implies that, this study program, is accurate and useful for analyzing 

SSFS and SCFS rectangular plates. 

Table 4.79: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio 

 
 S = b/a 

 

CSFS Plate CCFS Plate 

Program 

Nx= n2x  ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ 

n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem 
et al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ 

n3 

1.0 1.957 1.717 13.978 3.029 2.792 8.489 

1.2 2.275 2.038 11.629 3.861 3.624 6.540 

1.5 2.987 2.751 8.579 5.499 5.262 4.504 

1.6 3.277 3.040 7.796 6.140 5.903 4.015 

2.0 4.664 4.427 5.354 9.156 8.920 2.646 
Aver. 
%diff. 

  9.467   5.239 
 

The coefficients of critical buckling load in Table 4.79, for CSFS plate, were 

compared with those obtained by Ibearugbulem et al. (2014), and the percentage 

differences are 13.978%, 11.629%, 8.579%, 7.796% and 5.354% respectively 

for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. And and average percentage 

difference is 9.467%. These values indicate an upper bound to those under 

comparison, and are little above 5% difference but are within the acceptable 

limit in statistics.  

 

Also, those coefficients for CCFS plate in the same Table 4.79, were compared 

with the same authors and the percentage differences are 8.489%, 6.540%, 

4.504%, 4.015% and 2.646%, with an average value of 5.239%. These are 

upper bound to those compared with, and are slightly above 5%, but there are 

statistically acceptable. 



118 
 

 

Thus, this means that this study program, is okay and quicker way for analyzing 

CSFS and CCFS rectangular plates. 

Table 4.80: Comparison of coefficients of critical buckling load 'n' obtained 
from the developed program with those of Ibearugbulem et al. (2014)  

Aspect 
Ratio 

 
 

 S = b/a 
 

SCFCPlate CCFC Plate 

Program 

Nx= n2x  ; 

        n 

Ibearugbulem 
et al.(2014) 

 
 

n1 

% difference 
100(n- n1)/ n1 

Program 

Nx= n2x ; 

        n2 

Ibearugbulem 
et al.(2014) 

 
 

n3  

% difference 
100(n2- n3)/ 

n3 

1.0 4.808 4.593 4.681 5.139 4.902 4.835 

1.2 6.668 6.454 3.316 6.912 6.675 3.551 

1.5 10.106 9.891 2.174 10.279 10.042 2.360 

1.6 11.423 11.208 1.918 11.580 11.343 2.089 

2.0 17.545 17.331 1.235 17.663 17.426 1.360 
Aver. 
%diff. 

  2.665   2.839 
 

In Table 4.80, the coefficients of critical buckling load, n, for SCFC plate, were 

compared with those gotten from  Ibearugbulem et al. (2014), and the 

percentage differences are 4.681%, 3.316%, 2.174%, 1.918% and 1.235% 

respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. The average percentage 

difference is 2.665%. These values show that there are upper bound to those 

under comparison, and are below 5%. Thus, there are very close to each other. 

 

Also, those for CCFC plate, in the same Table4.80, were compared with the 

same authors. And the percentage differences are 4.835%, 3.551%, 2.360%, 

2.089% and 1.360% with an average value of 2.839%. All the values are upper 

bound to those compared with, and are below 5%. This shows that the values 

agree closely with each other. Thus, this means that this study program, is 

accurate and adequate for analyzing SCFC and CCFC rectangular plates. 
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4.2.3 Discussions of the Results of Free Vibration Analysis 

In order to validate these results, obtained from this new program, the 

coefficients of fundamental natural frequency, were compared in Tables 4.81– 

4.86. This comparison was made between these results with those available in 

literatures. 
 

Table4.81: Comparison of coefficients of fundamental frequency ‘f’ obtained 

from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

SSSS Plate CCCC Plate 
Program 

ω = ; 

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω = ; 

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 2.001 2.001 0.00 3.648 3.644 0.11 
1.2 1.695 1.695 0.00 3.118 3.115 0.10 
1.5 1.445 1.445 0.00 2.740 2.738 0.073 
1.6 1.391 1.391 0.00 2.668 2.666 0.075 
2.0 1.251 1.251 0.00 2.497 2.496 0.04 

Aver. %diff.   0.00   0.080 

Where  is the coefficient of the fundamental natural frequency. 

 

To authenticate these results, comparison was made in Table 4.81 for SSSS and 

CCCC plates between the coefficients of fundamental natural frequency 

obtained from the computer program with those obtain by Ibearugbulem et al. 

(2014).  

For SSSS plate, the percentage differences are all 0.000%, for aspect ratio 1.0, 

1.2, 1.5, 1.6, and 2.0. These values indicate no difference with those under 

comparison and are the same. 

Also, for CCCC plate, values in the same Table 4.81, were compared with the 

same authors. The percentage differences are 0.110%, 0.096%, 0.073%, 0.075% 

and 0.040%, with an average percentage difference of 0.079%. These are 

slightly upper bound to those compared with, and are below 5%. This shows 

negligible difference with each other. Furthermore , comparing the same values 
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with those obtained by Njoku et al. (2013) for the same aspect ratios, the 

percentage difference are 0.081%, 0.075%, 0.061%, 0.059% and 0.042%, with 

an average percentage difference of 0.064%. All are below 5%, and shows 

negligible difference with each other.   

Following the same procedure of validation, the remaining plates are analyze as 

follows: 

Table4.82: Comparison of coefficients of fundamental frequency ‘f’ obtained 
from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

CSSS Plate CSCS Plate 
Program 

ω = ; 

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω = ; 

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 2.399 2.399 0.00 2.934 2.934 0.00 
1.2 1.945 1.945 0.00 2.277 2.278 -0.044 
1.5 1.584 1.584 0.00 1.762 1.762 0.00 
1.6 1.508 1.508 0.00 1.656 1.656 0.00 
2.0 1.316 1.316 0.00 1.390 1.391 -0.072 

Aver. %diff.   0.00   -0.023 
 

Table 4.82, contains the comparison between the values of fundamental natural 

frequency obtained for CSSS plate from the program and those of Ibearugbulem 

et al. (2014). The percentage differences are 0.000%, 0.000%, 0.000%, 0.000% 

and 0.000% respectively, for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. These 

values indicate no difference with those under comparison and are adequate. 

Also, those for CSCS plate were compared with  those obtained by 

Ibearugbulem et al. (2014) and the percentage differences  for aspect ratio 1.0, 

1.2, 1.5, 1.6, and 2.0 are 0.000%, -0.044%, 0.000%, 0.000% and -0.072% 

respectively with an average percentage differences of 0.023%. These values 

show no difference with those under comparison and are the same. 

Thus, this implies that this study program, is accurate and adequate for 

analyzing CSSS and CSCS rectangular plates. 
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Recalled that, fundamental natural frequency is the value of externally induced 

vibrating frequency on the plate that causes it to resonate. Physical resonance 

makes a vibrating continuum to deflect excessively and is therefore a very 

dangerous phenomenon.  Hence, the force or external frequency should not get 

close to the fundamental natural frequency of a vibrating continuum during its 

entire life time. 

Table4.83: Comparison of coefficients of fundamental frequency ‘f’ obtained 
from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

CCSS Plate CCCS Plate 
Program 

ω =  

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω =  

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 2.749 2.749 0.00 3.229 3.229 0.00 
1.2 2.340 2.340 0.00 2.625 2.625 0.00 
1.5 2.028 2.028 0.00 2.172 2.172 0.00 
1.6 1.965 1.965 0.00 2.082 2.082 0.00 
2.0 1.808 1.808 0.00 1.864 1.864 0.00 

Aver. %diff.   0.00   0.00 

 

The coefficients of fundamental natural frequency  in Table 4.83, for CCSS 

plate were compared with those obtained by Ibearugbulem et al. (2014), and the 

percentage differences are 0.000%, 0.000%, 0.000%, 0.000% and 0.000% with 

an average value of 0.000% which shows no difference with each other.  

 

Also, those for CCCS plate in the same Table above, were compared with same 

authors, and the percentage differences are 0.000%, 0.000%, 0.000%, 0.000% 

and 0.000% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. And the 

average percentage differences of 0.000%. These values indicate no difference 

with those under compared with. This is indication that, the developed programs 

are adequate and satisfactory programs for stability analysis of the plates. 
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Table 4.84: Comparison of coefficients of fundamental frequency ‘f’ obtained 
from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

SSFS Plate SCFS Plate 

Program 

ω = ; 

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω = ; 

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 1.250 1.161 7.666 1.758 1.586 10.845 
1.2 1.175 1.110 5.856 1.698 1.576 7.741 
1.5 1.113 1.069 4.116 1.650 1.571 5.029 
1.6 1.100 1.061 3.676 1.640 1.570 4.459 
2.0 1.064 1.039 2.406 1.613 1.568 2.870 

Aver. %diff.   4.744   6.189 
 

Also, the coefficients of fundamental natural frequency, f, in Table 4.84 for 

SSFS plate were compared with those obtained by Ibearugbulem et al. (2014), 

and the percentage differences are 7.666%, 5.856%, 4.116%, 3.676% and 

2.406% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0, with an average 

percentage difference of 4.744%. These values are upper bound to those 

compared with. There are close to those under comparison, and are satisfactory. 

 

Moreso, for SCFS plate, the values in same Table 8.84, were compared with the 

same authors, and the percentage differences are 10.845%, 7.741%, 5.029%, 

4.459% and 2.870%, with an average value of 6.189%. This shows that the 

average percentage difference is slightly above 5% but still within statistically 

acceptable range.   

Thus, this implies that this study program is adequate and a quicker way of 

analyzing SSFS and SCFS rectangular plates. 
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Table 4.85: Comparison of coefficients of fundamental frequency ‘f’ obtained 
from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

CSFS Plate CCFS Plate 
Program 

ω = ; 

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω = ; 

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 1.398 1.310 6.718 1.868 1.793 4.183 
1.2 1.257 1.190 5.630 1.757 1.703 3.171 
1.5 1.152 1.106 4.159 1.678 1.641 2.255 
1.6 1.131 1.090 3.761 1.662 1.630 1.963 
2.0 1.080 1.052 2.662 1.624 1.603 1.310 

Aver. %diff.   4.586   2.576 
 

In Table 4.85, the coefficients of fundamental natural frequency, f, for CSFS 

plate were compared with Ibearugbulem et al. (2014), and the percentage 

differences are 6.718%, 5.630%, 4.159%, 3.761% and 2.662% respectively for 

aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0. The average percentage differences is 

4.586%. The average percentage difference is below 5% and hence satisfactory. 

Also, for CCFS plate, the coefficients were compared with those obtained by 

Ibearugbulem et al. (2014), and the percentage differences  are 4.183%, 3.171%, 

2.255%, 1.963% and 1.310% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 

2.0. And the average percentage differences is 2.576%. These values are all less 

than 5%, which means, there are close to those under comparison.  

 Therefore, this indicates that this study program, is accurate and satisfactory for 

analyzing CSFS and CCFS rectangular plates. 
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Table 4.86: Comparison of coefficients of fundamental frequency ‘f’ obtained 
from the developed program with those of Ibearugbulem et al. (2014) 

Aspect Ratio         
S = b/a 

 

SCFC Plate CCFC Plate 
Program 

ω =  

  

   ƒ =fs/π2 

Ibearugbulem 
et al.(2014) 

 
 

f1 

% difference 
100(f- f1)/ f1 

Program 

ω =  

    

 ƒ2 =fs/π2
 

Ibearugbulem 
et al.(2014) 

 
 

f3  

% difference 
100(f2- f3)/ f3 

1.0 2.418 2.363 2.328 2.500 2.441 2.417 
1.2 2.373 2.334 1.671 2.416 2.374 1.769 
1.5 2.337 2.312 1.081 2.357 2.329 1.202 
1.6 2.329 2.307 0.954 2.345 2.321 1.034 
2.0 2.309 2.295 0.610 2.317 2.302 0.652 

Aver. %diff.   1.329   1.415 
 

Considering SCFC plate, coefficients of fundamental natural frequency, f, in 

Table 4.86, were compared with the same authors and the percentage 

differences are 2.328%, 1.671%, 1.081%, 0.954% and 0.610%, with an average 

value of 1.329%. This indicates that the average percentage difference is below 

5% and satisfactory. 

 

Also, for CCFC plate the coefficients in the same Table 8.86, were compared 

with same authors, and the percentage differences are 2.417%, 1.769%, 1.202%, 

1.034% and 0.652% respectively for aspect ratio 1.0, 1.2, 1.5, 1.6, and 2.0 with 

an average percentage differences of 1.415%. All the percentage differences are 

below 5% and hence adequate.  

Thus, this implies that this study Program is accurate and adequate alternative 

for analyzing SCFC and CCFC rectangular plates. 

 

4.3 Discussions of Results of the Analysis of Continuous Plate 

4.3.1 Discussions of Results of the Analysis of One-Way Continuous plate  

To validate the results obtained from these present program, the coefficients of 

fixed edge moments and final support moment, from the developed program, 
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were compared with those of manual method as presented on Table 4.87 for 

continuous plate in one-way.  

Table 4.87: Comparison of FEM and Support Moment (SPTM) obtained from 
manual method with those   obtained from Program for 1-way. s= 1, 4 spans 
FEM = β1qa2 

         

        β1 

FEM = β2qa2 

        

         β2 

Percentage 
Difference 
 
100(β2- β1)/ β1 

SPTM=  β3qa2 

     

            β3 

SPTM = β4qa2 

         

           β4 

Percentage 
Difference 
 
100(β4- β3)/ β3 

0.0000 0.0000 0.00 0.00000 0.00000 0.00 
-0.06760 -0.06760 0.00 -0.06590 -0.06590 0.00 
-0.06363 -0.06363 0.00 -0.06136 -0.06135 0.016 
-0.06363 -0.06363 0.00 -0.06250 -0.06249 0.016 
-0.06363 -0.06363 0.00 -0.06476 -0.06476 0.00 
-0.06363 -0.06363 0.00 -0.06590 -0.06590 0.00 
-0.06760 -0.06760 0.00 -0.06930 -0.06930 0.00 
0.0000 -0.00000 0.00 0.00000 0.00000 0.00 

 
Where, 

β1 and β3 are the cofficients of fixed end moment and support moment 

respectively obtained from manual approach, and β2 and β4 are the cofficients of 

fixed end moment and support moment respectively obtained from the 

developed Program. 

From continuous plate in one-way, the comparison in Table 4.87 indicate that 

there is no difference between the values obtained from both the program and 

those of the manual approach for FEM. The two approaches agree absolutely 

with each other.  While a maximum percentage difference of 0.016% is 

indicated for final support moments. This means that the results from the 

program are very close to those obtained using manual approach. 

 

Also, looking at the figures obtained for both the fixed edge and final support 

moments, it is very clear that the values of the final support moments indicate a 

good distribution of the fixed edge moments at the supports.  The implication of 
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this is that, polynomial shape functions are better approximation of the 

deflection shape of the individual panels, that constitute the continuous plate in 

one-way. It is also obvious that, the use of polynomial shape functions in the 

analysis of one–way continuous plate manually, is much easier, straight forward 

and quicker than the use of trigonometric shape functions or approach which is 

very tedious, and full of ambiquous manipulations, that usually lead to errors 

and inconsistent results. 

 

Furthermore, with the developed program which has proved accurate and 

reliable, has simplify the entire cumbersome process of analysis of one-way 

continuous plate. This program makes it possible for the user to choose practical 

dimensions of the individual panel, that make up the continuous plate unlike the 

use of manual approach, which is mostly confined to square panels and beyond 

which, it becomes near impossible to carry out the tedious manipulations. It is 

therefore, an opportunity for analysts to utilize this program to enhance their 

work and safe time and effort. 

 
In addition, from the results of continuous plates obtained, expression have been 

formulated for the fixed end moments, support moments and span moments for 

one-way continuous plates as shown in tables 4.88.  

Table 4.88:  Expression for FEMs, Support Moments and Span Moments of 

a four span one –way continuous plate,  s = b/a =1. 

Support FEM =-βqa2 

         -β 

SPTM =-βqa2 

         -β 

Span SPNM =-βqa2 

         Β 

Expresions 

1   1 0.0932 FEM     = -qa2/10 

SPTM   = -qa2/10 

SPNM = qa2/10 

2 0.0656 0.0636 2 0.0614 

3 0.0636 0.0636 3 0.0594 

4 0.0656 0.0676 4 0.0912 
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-0.1= -1/10 

 

-0.1= -1/10 

  

0.1= 1/10 

 

Table 4.88 above shows that the fixed edge moment of a one-way continuous 

plate, can be taken as -qa2/10, in each of the clamped edge of the panels.  In 

beam analysis, this is - or +ql2/12 and - or +ql2/8, for a beam fixed at both edges 

and for a beam fixed at one end and pin at the other end  respectively. It is also 

clear that, both the support moments and span moments can be calculated using 

-qa2/10. This will simplified the entire calculation process manually. 

4.3.2  Discussions of Results of the Analysis of Two-Way Continuous plate 

In order to authenticate the suitablility of the polynomial shape function in 

analysis of two-way continuous plates and also validating the results of the 

program, the results of both the manual approach and those of the program were 

compared as follows. 

 
Table 4.89: Comparison of FEM and Support Moment (SPTM) obtained from 
manual method with those   obtained from Program for four span two-way 
continuous plate. s= 1, Section S-S. 
FEM = β1qa2 

β1 

FEM = β2qa2 

β2 

Percentage 
Difference 

100(β2- β1)/ β1 

SPTM = β3qa2 

β3 

SPTM = β4qa2 

β4 

Percentage 
Difference 

100(β4- β3)/ β3 

0.0000 0.0000 0.00 0.00000 0.0000 0.00 
-0.05042 -0.05042 0.00 -0.05085 -0.05085 0.00 
-0.05142 -0.05142 0.00 -0.05199 -0.05199 0.00 
-0.05142 -0.05142 0.00 -0.05171 -0.05171 0.00 
-0.05142 -0.05142 0.00 -0.05113 -0.05114 0.020 
-0.05142 -0.05142 0.00 -0.05085 -0.05085 0.00 
-0.05042 -0.05042 0.00 -0.04999 0.04999 0.00 
0.0000 0.0000 0.00 0.00000 0.0000 0.00 

 
where, β1 and β3 are the cofficients of fixed end moment and support moment 

respectively obtained from manual approach, and β2 and β4 are the cofficients of 

fixed end moment and support moment respectively obtained from the 

developed Program. 
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From  a four span two-way continuous plate, the results presented in Table 4.89 

for section S-S in x-direction, show that there is no difference between the 

values obtained from the computer program and those obtained by manual 

approach for fixed edge moments (FEM). This justifies the fact that the 

computer program is accurate and adequate for use in analysis of continuous 

plate. A maximum percentage difference of 0.020% for final support moment, is 

observed which is considered insignificant. This means that the values from the 

program are very close to those of manual approach. It also indicates that the 

final support moments distribute effectively the moments at the supports. 

 
Table 4.90: Comparison of FEM and Support Moment (SPTM) obtained from 
manual method with those   obtained from Program for a four span two-way 
continuous plate. S= 1, Section T-T. 

FEM = 

β1qa2 

β1 

FEM = 

β2qa2 

β2 

Percentage 
Difference 
100(β2- β1)/ 

β1 

SPTM = β3qa2 

β3 

SPTM = 

β4qa2 

β4 

Percentage 
Difference 
100(β4- β3)/ 

β3 

0.0000 0.0000 0.00 0.00000 0.0000 0.00 
-0.03856 -0.03857 0.00 -0.04026 -0.04027 0.025 
-0.04252 -0.04253 0.00 -0.04478 -0.04480 0.045 
-0.04252 -0.04253 0.00 -0.04365 -0.04367 0.046 
-0.04252 -0.04253 0.00 -0.04139 -0.04140 0.024 
-0.04252 -0.04253 0.00 -0.04024 -0.04027 0.074 
-0.03856 -0.0387 0.00 -0.03686 -0.03686 0.00 
0.0000 0.0000 0.00 0.00000 0.0000 0.00 

 

Also, the comparison in Table 4.90 for section T-T in x-direction indicate that 

there is also no difference between the values obtained from the computer 

program and those obtained by manual approach for fixed edge moments 

(FEM).  This justifies the fact that the computer program is accurate and 

adequate for use in analysis of continuous plate. A maximum percentage 

difference of 0.074%   for final support moment is observed which is considered 

insignificant. This means that, the values from the program are very close to 
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those of manual approach. Also, it indicates that, the final support moments 

distribute effectively the moments at the supports.  

 
 
 
Table 4.91: Comparison of FEM and Support Moment (SPTM) obtained from 
manual method with those   obtained from Program for a three span two-way 
continuous plate. s= 1, Section 1-1. 
 
FEM = β1qa2

β1 

FEM=  β2qa2 

β2 

Percentage 
Difference 

100(β2- β1)/ β1 

SPTM = β3qa2 

β3 

SPTM = β4qa2 

β4 

Percentage 
Difference 

100(β4- β3)/ β3 

0.0000 0.00000 0.00 0.00000 0.00000 0.00 
-0.05042 -0.05042 0.00 -0.05102 -0.05102 0.00 

-0.05142 -0.05142 0.00 -0.05182 -0.05182 0.00 
-0.05142 -0.05142 0.00 -0.05102 -0.05102 0.00 
-0.05042 -0.05042 0.00 -0.04982 0.04982 0.00 

0.00000 0.00000 0.00 0.00000 0.00000 0.00 

 
Considering the results obtained for the strips in y-direction as shown in Table 

4.91. The percentage differences between the results obtained from the 

computer program and those obtained by manual approach are all zeros for both 

fixed end moments and final support moments. This is an indication that there 

are little or no differences between them. 

Table 4.92: Comparison of FEM and Support Moment (SPTM) obtained from 
manual method with those   obtained from Program for a three span two-way 
continuous plate. S = 1, Section 2-2 
FEM = β1qa2 

         β1 

FEM = β2qa2 

        β2 

Percentage 
Difference 

100(β2- β1)/ β1 

SPTM = β3qa2 

β3 

SPTM = β4qa2 

β4 

Percentage 
Difference 

100(β4- β3)/ β3 

0.0000 0.00000 0.00 0.00000 0.00000 0.00 
-0.03856 -0.03857 0.026 -0.04094 -0.04095 0.024 
-0.04252 -0.04253 0.024 -0.04410 -0.04412 0.045 
-0.04252 -0.04253 0.024 -0.04094 -0.04095 0.024 
-0.03856 -0.03857 0.026 -0.03618 -0.03618 0.00 
0.00000 0.00000 0.00 0.00000 0.00000 0.00 
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In Table 4.92, comparison was made between the cofficients of FEMs and span 

moment, it indicates maximum percentage differences of 0.026% and 0.045% 

for fixed end and final support moments respectively. These are considered 

insignificant. 

 

The   results indicate that, polynomial shape functions can be use in analysis of 

two-way continuous plate. The offer less difficulties and are less cumbersome 

compare to the the use of trigonometric or Fourier series, which are full of 

assumptions that often lead to errors in results. Also, the use of polynomial 

shape functions, offers a better understanding in the entire analytic process 

unlike the former which is based more on assumption and trial and error 

approach. 

 

Moreover, from the available literatures, the use of the former rigorous 

approach, limits  continuous plate analysis to aspect ratio of one only, that is, 

assummimg all the individual panels, that make up the continuous plate, to only 

square plates. Because, the situation could be complex, when the panels of the 

continuous plate are not square panels.  This could have be the reason why there 

are limited literatures in continuous plate analysis, since the former approach 

could not give room for practical situations in terms of dimensions. However, 

with the computer program developed in this study, such bottle-necks are 

illuminated, because this computer program offers high degree of flexibility in 

terms of dimensions. It can accommodate any dimension at all. It is quicker and 

straight forward.   

 

From the results of continuous plates obtained, equations or expressions have 

been formulated for the fixed end moments, support moments and span 

moments, for continuous plates in two ways as shown in Table 4.93.  
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Table 4.93:  Expressions for FEM, Support Moments and Span Moments of a   
4 x 3 spans two-way Continuous Plate. s = b/a =1. 

Support/Span FEME=-βqa2 

-β 

FEMI=-βqa2 

-β 

SPTME =-βqa2 

-β 

SPTMI =-βqa2 

-β 

SPNME=-βqa2 

β 

SPNMI=-βqa2 

β 

 Sect. S-S Sect. T-T Sect. S-S Sect. T-T Sect. S-S Sect. T-T 

1     0.09929 0.1037 

2 0.05042 0.03856 0.05142 0.04252 0.07358 0.08248 

0.05142 0.04252 

3 0.05142 0.04252 0.05142 0.04252 0.07408 0.08447 

0.05142 0.04252 

4 0.05142 0.04252 0.05042 0.03855 0.09979 0.10573 

0.05042 0.03856 

 FEM= 0.1 

=1/10 

FEM2,1= 

0.04=1/25 

FEM2,3=0.43= 

1/23 

SPTME 

=0.1=1/10 

SPTMI 

=0.43 

= 1/23 

SPNME =0.1 

= 1/10 

SPNMI = 0.1 

=1/10 

 

Expressions 

FEME  = -qa2/10, FEMI  = -qa2/25,-qa2/23 Respectively.  SPTME = -qa2/10, SPTMI = -qa2/23 

SPNME  = qa2/10,  SPNMI  = qa2/10,        (E  is External strip, I is Internal Strip) 

 

For a two-way continuous plate, in Table 4.93, it can be deduced that, the fixed 

end moment, of the external strips in x-direction is -qa2/10, while that of the 

internal strips is -qa2/25., for the panels pinned at one end and clamped at the 

other end, and -qa2/23, for the panels fixed at both ends. The support moment 

for the external strips is -qa2/10, and for internal strips is -qa2/23.  While the 

span moments, can be calculated from qa2/10, in both the external and internal 

strips. These expressions will help simplify the manual calculations of 

continuous plate.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, rectangular isotropic single panel plates and continuous plates 

were analyzed using polynomial series formulated shape function in Ritz energy 

equation, and computer programs were developed for these analyses. 

From this work, the following conclusions are made: 

(i) Computer programs were developed for the analysis of single panel 

rectangular plates in pure bending with various boundary conditions. 

(ii) Also, programs were developed for stability analysis of single panel 

rectangular plates in pure bending with various boundary conditions. 

(iii) Computer programs were developed for free vibration analysis of single 

panel rectangular plates with various boundary conditions. 

(iv) Expression were derived based on polynomial shape function to analyze 

continuous plate. 

(v) Programs were developed for the analysis of both one-way and two-way 

continuous plates. 

And from the results and discussions in chapter four, it is evident that the 

percentage differences between the results obtained from this new programs, 

based on polynomial shape functions, using MATLAB programming language, 

for single panel thin isotropic rectangular plates, and those obtained by earlier 
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studies are mostly insignificant, and within the acceptance limit in statistics. 

Therefore, considered adequate and provide a better alternative and quicker 

approach to analyze thin isotropic rectangular plates. 

 

Furthermore, from the results and discussions on continuous plates, programs 

developed offer a better, simpler and faster way of analyzing both one-way and 

two-way continuous plate. The exact (manual) and approximate analysis of 

continuous plate was based only on aspect ratio of  one only due to difficulties 

in handling the complex differential equations and making erroneous 

assumptions, but this present programs offers flexibility to work, based on 

dimensions of the plate which may not necessarily be square. In addition, the 

derived expressions from this study, can simplify even the manual computation 

of continuous plates. 

 

Also, it is concluded that, polynomial shape functions are better approximations 

of the individual deflected shape, and are adequate and simpler for continuous 

plate analysis. 

Therefore, the conclusion that, these developed programs, should be use for 

analysis of single panel and continuous rectangular plates. 

 

5.2 Recommendations 

Serious and committed effort has been made in this study, to develop computer 

programs for analysis of thin isotropic rectangular plates both single panel and 

continuous plates. Hence, the following recommendations are made: 

(i) These programs are recommended for analysis of thin isotropic 

rectangular plates as a better and faster alternative. 
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(ii) The programs also should be use for analysis of continuous plate in both 

one-way and two-way continuous plate. 

(iii) Polynomial shape functions are adequate, simpler and quicker means of 

analyzing continuous rectangular plates. 

(iv) Future studies should consider developing programs for force vibration.  

(v) Effort should be made in future studies to develop programs for 

orthotropic rectangular plates and others. 

(vi) Also, future studies should consider expanding and improving on these 

programs to convert them into an installable computer software for 

rectangular plate analysis. 

 

5.3  Contributions to Knowlegde 

The present study has contributed to knowledge in the following ways.  

(i) This work has developed computer programs for pure bending, buckling 

and free vibration analyses of twelve single panel rectangular isotropic 

plate types with various boundary conditions, based on polynomial shape 

functions. The program offer better, simpler, faster and more accurate 

way of analyzing rectangular isotropic plates.  

(ii) It has derived expressions based on polynomial shape functions and 

developed computer programs for analysis of both one-way and two-way 

continuous plates. 

(iii) This work has shown that, polynomial shape functions are adequate for 

analysis of continuous rectangular plates, and that the use of polynomial 

shape functions offers a simpler, quicker and accurate approach of 

analysis of continuous rectangular plates. 
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APPENDIX 1 

SINGLE PANEL RECTANGULAR PLATES PROGRAMS 

 

3. 3.1(i) SSSS Plate 

clc 

%PROGRAM FOR SSSS PLATE 

syms r q  

U = r-2*r^3+r^4; 

V = q-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 
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z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r-2*r^3+r^4)*(q-2*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),7) 

Wmax = vpa((alpha*Q*a^4/D),7); 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-12*r1)*(q1-2*q1^3+q1^4)+(v/s.^2)*(r1-2*r1^3+r1^4)*(12*q1^2-

12*q1)),5) 

Mxc = vpa(beta*Q*a^2,5); 

beta1 = vpa(-u*(v*(12*r1^2-12*r1)*(q1-2*q1^3+q1^4)+(1/s.^2)*(r1-

2*r1^3+r1^4)*(12*q1^2-12*q1)),5) 
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Myc = vpa(beta1*Q*a^2,5);  

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in y-D q3:'); 

beta2 = vpa(-u*((12*r2^2-12*r2)*(q2-2*q2^3+q2^4)+(v/s.^2)*(r2-2*r2^3+r2^4)*(12*q2^2-

12*q2)),5) 

Mxe = vpa(beta2*Q*a^2,5); 

beta3 = vpa(-u*(v*(12*r3^2-12*r3)*(q3-2*q3^3+q3^4)+(1/s.^2)*(r3-

2*r3^3+r3^4)*(12*q3^2-12*q3)),5) 

Mye = vpa(beta3*Q*a^2,5); 

%max Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(q4-2*q4^3+q4^4)+((2-v)/s.^2)*(1-6*r4^2+4*r4^3)*(12*q4^2-

12*q4)),5) 

Vxmax = vpa(delta*Q*a,5); 

delta1 = vpa(-u*(((2-v)/s.^1)*(12*r5^2-12*r5)*(1-6*q5^2+4*q5^3)+(1/s.^3)*(r5-

2*r5^3+r5^4)*(24*q5-12)),5) 

Vymax = vpa(delta1*Q*a,5); 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(1-6*r6^2+4*r6^3)*(q6-2*q6^3+q6^4))/D,5) 

slopex = vpa(yr*Q*a^3,5); 

yq = vpa((u*(r7-2*r7^3+r7^4)*(1-6*q7^2+4*q7^3))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5); 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,5) 
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%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7); 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),5) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7); 

 

 3. 3.1(ii) CCCC Plate 

clc 

%PROGRAM FOR CCCC PLATE 

syms r q  

U = r^2-2*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 
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Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r^2-2*r^3+r^4)*(q^2-2*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),7) 

Wmax = vpa((alpha*Q*a^4/D),7) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((2-12*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(v/s.^2)*(r1^2-2*r1^3+r1^4)*(2-

12*q1+12*q1^2)),7) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*((v*(2-12*r1+12*r1^2)*(q1^2-2*q1^3+q1^4))+(1/s.^2)*(r1^2-

2*r1^3+r1^4)*(2-12*q1+12*q1^2)),7) 

myc = vpa(beta1*Q*a^2,7)  

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 



144 
 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((2-12*r2+12*r2^2)*(q2^2-2*q2^3+q2^4)+(v/s.^2)*(r2^2-2*r2^3+r2^4)*(2-

12*q2+12*q2^2)),7) 

Mxe = vpa(beta2*Q*a^2,7) 

beta3 = vpa(-u*((v*(2-12*r3+12*r3^2)*(q3^2-2*q3^3+q3^4))+(1/s.^2)*(r3^2-

2*r3^3+r3^4)*(2-12*q3+12*q3^2)),7) 

Mye = vpa(beta3*Q*a^2,7) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(q4^2-2*q4^3+q4^4)+((2-v)/s^3)*(2*r4-6*r4^2+4*r4^3)*(2-

12*q4+12*q4^2)),7) 

Vx = vpa(delta*Q*a,7) 

delta1 = vpa(-u*(((2-v)/s.^1)*(2-12*r5+12*r5^2)*(2*q5-6*q5^2+4*q5^3)+(1/s.^3)*(r5^2-

2*r5^3+r5^4)*(24*q5-12)),7) 

Vy = vpa(delta1*Q*a,7) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(2*r6-6*r6^2+4*r6^3)*(q6^2-2*q6^3+q6^4))/D,7) 

slopex = vpa(yr*Q*a^3,7) 

yq = vpa((u*(r7^2-2*r7^3+r7^4)*(2*q7-6*q7^2+4*q7^3))/(s*D),7) 

Slopey = vpa(yq*Q*a^3,7) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 
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Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

  

 

 

3. 3.1(iii) CSSS Plate 

clc 

%PROGRAM FOR CSSS PLATE 

syms r q  

U = r-2*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 
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Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r-2*r^3+r^4)*(1.5*q^2-2.5*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((-12*r1+12*r1^2)*(1.5*q1^2-2.5*q1^3+q1^4)+(v/s.^2)*(r1-

2*r1^3+r1^4)*(3-15*q1+12*q1^2)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(-12*r1+12*r1^2)*(1.5*q1^2-2.5*q1^3+q1^4)+(1/s.^2)*(r1-

2*r1^3+r1^4)*(3-15*q1+12*q1^2)),5) 

Myc = vpa(beta1*Q*a^2,5) 

%Fixed edge Moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 
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r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((-12*r2+12*r2^2)*(1.5*q2^2-2.5*q2^3+q2^4)+(v/s.^2)*(r2-

2*r2^3+r2^4)*(3-15*q2+12*q2^2)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*(v*(-12*r3+12*r3^2)*(1.5*q3^2-2.5*q3^3+q3^4)+(1/s.^2)*(r3-

2*r3^3+r3^4)*(3-15*q3+12*q3^2)),5) 

Mye = vpa(beta3*Q*a^2,5)  

%Shear Force  

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(1.5*q4^2-2.5*q4^3+q4^4)+((2-v)/s.^2)*(1-6*r4^2+4*r4^3)*(3-

15*q4+12*q4^2)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(-12*r5+12*r5^2)*(3*q5-7.5*q5^2+4*q5^3)+((1/s.^3)*(r5-

2*r5^3+r5^4)*(24*q5-15))),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(1-6*r6^2+4*r6^3)*(1.5*q6^2-2.5*q6^3+q6^4))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7-2*r7^3+r7^4)*(3*q-7.5*q7^2+4*q7^3))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,5) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 
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%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

 

 

 

 3. 3.1(iv) CSCS  Plate 

clc 

%PROGRAM FOR CSCS PLATE 

syms r q  

U = r-2*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 
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Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r-2*r^3+r^4)*(q^2-2*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),7) 

Wmax = vpa((alpha*Q*a^4/D),7) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-12*r1)*(q1^2-2*q1^3+q1^4)+(v/s.^2)*(r1-2*r1^3+r1^4)*(2-

12*q1+12*q1^2)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(12*r1^2-12*r1)*(q1^2-2*q1^3+q1^4)+(1/s.^2)*(r1-2*r1^3+r1^4)*(2-

12*q1+12*q1^2)),5) 

Myc = vpa(beta1*Q*a^2,5) 

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 
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r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta = vpa(-u*((12*r2^2-12*r2)*(q2^2-2*q2^3+q2^4)+(v/s.^2)*(r2-2*r2^3+r2^4)*(2-

12*q2+12*q2^2)),5) 

Mxe = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(12*r3^2-12*r3)*(q3^2-2*q3^3+q3^4)+(1/s.^2)*(r3-2*r3^3+r3^4)*(2-

12*q3+12*q3^2)),5) 

Mye = vpa(beta1*Q*a^2,5)  

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(q4^2-2*q4^3+q4^4)+((2-v)/s.^2)*(1-6*r4^2+4*r4^3)*(2-

12*q4+12*q4^2)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(12*r5^2-12*r5)*(2*q5-6*q5^2+4*q5^3)+((1/s.^3)*(r5-

2*r5^3+r5^4)*(24*q5-12))),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(1-6*r6^2+4*r6^3)*(q6^2-2*q6^3+q6^4))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7-2*r7^3+r7^4)*(2*q7-6*q7^2+4*q7^3))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 
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%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(v) CCSS  Plate 

clc 

%PROGRAM FOR CCSS PLATE 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 
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b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (1.5*r^2-2.5*r^3+r^4)*(1.5*q^2-2.5*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),7) 

Wmax = vpa((alpha*Q*a^4/D),7) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((3-15*r1+12*r1^2)*(1.5*q1^2-2.5*q1^3+q1^4)+(v/s.^2)*(1.5*r1^2-

2.5*r1^3+r1^4)*(3-15*q1+12*q1^2)),7) 

Mxc = vpa(beta*Q*a^2,7) 

beta1 = vpa(-u*(v*(3-15*r1+12*r1^2)*(1.5*q1^2-2.5*q1^3+q1^4)+(1/s.^2)*(1.5*r1^2-

2.5*r1^3+r1^4)*(3-15*q1+12*q1^2)),7) 

Myc = vpa(beta1*Q*a^2,7) 

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2 :'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 
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beta2 = vpa(-u*((3-15*r2+12*r2^2)*(1.5*q2^2-2.5*q2^3+q2^4)+(v/s.^2)*(1.5*r2^2-

2.5*r2^3+r2^4)*(3-15*q2+12*q2^2)),7) 

Mxe = vpa(beta2*Q*a^2,7) 

beta3 = vpa(-u*(v*(3-15*r3+12*r3^2)*(1.5*q3^2-2.5*q3^3+q3^4)+(1/s.^2)*(1.5*r3^2-

2.5*r3^3+r3^4)*(3-15*q3+12*q3^2)),7) 

Mye = vpa(beta3*Q*a^2,5) 

%max Shear Force 

r4 = input('Enter the value for Vx r1:'); 

q4 = input('Enter the value for Vx q1:'); 

r5 = input('Enter the value for Vy r2:'); 

q5 = input('Enter the value for Vy q2:'); 

delta =vpa(-u*((24*r4-15)*(1.5*q4^2-2.5*q4^3+q4^4)+((2-v)/s.^2)*(3*r4-

7.5*r4^2+4*r4^3)*(3-15*q4+12*q4^2)),7) 

vxmax = vpa(delta*Q*a,7) 

delta1 = vpa(-u*(((2-v)/s.^1)*(3-15*r5+12*r5^2)*(3*q5-

7.5*q5^2+4*q5^3)+((1/s.^3)*(1.5*r5^2-2.5*r5^3+r5^4)*(24*q5-15))),7) 

vymax = vpa(delta1*Q*a,7) 

%slope 

r6 = input('Enter the value for slopex r3:'); 

q6 = input('Enter the value for slopex q3:'); 

r7 = input('Enter the value for slopey r4:'); 

q7 = input('Enter the value for slopey q4:'); 

yr = vpa((u*(3*r6-7.5*r6^2+4*r6^3)*(1.5*q6^2-2.5*q6^3+q6^4))/D,7) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(1.5*r7^2-2.5*r7^3+r7^4)*(3*q7-7.5*q7^2+4*q7^3))/(s*D),7) 

slopey = vpa(yq*Q*a^3,7) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 
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f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(vi) CCCS  Plate 

clc 

%PROGRAM FOR CCCS PLATE 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 
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h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (1.5*r^2-2.5*r^3+r^4)*(q^2-2*q^3+q^4); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),7) 

Wmax = vpa((alpha*Q*a^4/D),7) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((3-15*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(v/s.^2)*(1.5*r1^2-

2.5*r1^3+r1^4)*(2-12*q1+12*q1^2)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(3-15*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(1/s.^2)*(1.5*r1^2-

2.5*r1^3+r1^4)*(2-12*q1+12*q1^2)),5) 

Myc = vpa(beta1*Q*a^2,5)  

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta = vpa(-u*((3-15*r2+12*r2^2)*(q2^2-2*q2^3+q2^4)+(v/s.^2)*(1.5*r2^2-

2.5*r2^3+r2^4)*(2-12*q2+12*q2^2)),5) 

Mxe = vpa(beta*Q*a^2,5) 
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beta1 = vpa(-u*(v*(3-15*r3+12*r3^2)*(q3^2-2*q3^3+q3^4)+(1/s.^2)*(1.5*r3^2-

2.5*r3^3+r3^4)*(2-12*q3+12*q3^2)),5) 

Mye = vpa(beta1*Q*a^2,5) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-15)*(q4^2-2*q4^3+q4^4)+((2-v)/s.^2)*(3*r4-7.5*r4^2+4*r4^3)*(2-

12*r4+12*q4^2)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(3-15*r5+12*r5^2)*(2*q5-

6*q5^2+4*q5^3)+((1/s.^3)*(1.5*r5^2-2.5*r5^3+r5^4)*(24*q5-12))),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(3*r6-7.5*r6^2+4*r6^3)*(q6^2-2*q6^3+q6^4))/D,5) 

Slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(1.5*r7^2-2.5*r7^3+r7^4)*(2*q7-6*q7^2+4*q7^3))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 
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3. 3.1(vii) SSFS  Plate 

clc 

%PROGRAM FOR SSFS PLATE 

syms r q  

U = r-2*r^3+r^4; 

V = 2.33*q-3.33*q^3+3.33*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 
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echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r-2*r^3+r^4)*(2.33*q-3.33*q^3+3.33*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-12*r1)*(2.33*q1-3.33*q1^3+3.33*q1^4-q1^5)+(v/s.^2)*(r1-

2*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(12*r1^2-12*r1)*(2.33*q1-3.33*q1^3+3.33*q1^4-q1^5)+(1/s.^2)*(r1-

2*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Myc = vpa(beta1*Q*a^2,5)  

%Fixed edge Moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((12*r2^2-12*r2)*(2.33*q2-3.33*q2^3+3.33*q2^4-q2^5)+(v/s.^2)*(r2-

2*r2^3+r2^4)*(-20*q2+40*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*(v*(12*r3^2-12*r3)*(2.33*q3-3.33*q3^3+3.33*q3^4-q3^5)+(1/s.^2)*(r3-

2*r3^3+r3^4)*(-20*q3+40*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5)  
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%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(2.33*q4-3.33*q4^3+3.33*q4^4-q4^5)+((2-v)/s.^2)*(1-

6*r4^2+4*r4^3)*(-20*q4+40*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(12*r5^2-12*r5)*(2.33-10*q5^2+13.33*q5^3-

5*q5^4)+((1/s.^3)*(r5-2*r5^3+r5^4)*(-20+80*q5-60*q5^2))),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(1-6*r6^2+4*r6^3)*(2.33*q6-3.33*q6^3+3.33*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7-2*r7^3+r7^4)*(2.33-10*q7^2+13.33*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(viii) SCFS  Plate 

clc 

%PROGRAM FOR SCFS PLATE 
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syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 2.33*q-3.33*q^3+3.33*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 
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u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (1.5*r^2-2.5*r^3+r^4)*(2.33*q-3.33*q^3+3.33*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-15*r1+3)*(2.33*q1-3.33*q1^3+3.33*q1^4-

q1^5)+(v/s.^2)*(1.5*r1^2-2.5*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(12*r1^2-15*r1+3)*(2.33*q1-3.33*q1^3+3.33*q1^4-

q1^5)+(1/s.^2)*(1.5*r1^2-2.5*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Myc = vpa(beta1*Q*a^2,5) 

%Fixed edge Moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((12*r2^2-15*r2+3)*(2.33*q2-3.33*q2^3+3.33*q2^4-

q2^5)+(v/s.^2)*(1.5*r2^2-2.5*r2^3+r2^4)*(-20*q2+40*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*(v*(12*r3^2-15*r3+3)*(2.33*q3-3.33*q3^3+3.33*q3^4-

q3^5)+(1/s.^2)*(1.5*r3^2-2.5*r3^3+r3^4)*(-20*q3+40*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 
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r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-15)*(2.33*q4-3.33*q4^3+3.33*q4^4-q4^5)+((2-v)/s.^2)*(3*r4-

7.5*r4^2+4*r4^3)*(-20*q4+40*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(3-15*r5+12*r5^2)*(2.33-10*q5^2+13.33*q5^3-

5*q5^4)+((1/s.^3)*(1.5*r5^2-2.5*r5^3+r5^4)*(-20+80*q5-60*q5^2))),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(3-15*r6+12*r6^2)*(2.33*q6-3.33*q6^3+3.33*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(1.5*r7^7-2.5*r7^3+r7^4)*(2.33-10*q7^2+13.33*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

 

3. 3.1(ix) CSFS  Plate 

clc 

%PROGRAM FOR CSFS PLATE 

syms r q  

U = r-2*r^3+r^4; 
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V = 2.8*q^2-5.2*q^3+3.8*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 
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D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r-2*r^3+r^4)*(2.8*q^2-5.2*q^3+3.8*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-12*r1)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-q1^5)+(v/s.^2)*(r1-

2*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*((v*(-12*r1+12*r1^2)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-q1^5))+(1/s.^2)*(r1-

2*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

myc = vpa(beta1*Q*a^2,5)  

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((-12*r2+12*r2^2)*(2.8*q2^2-5.2*q2^3+3.8*q2^4-q2^5)+(v/s.^2)*(r2-

2*r2^3+r2^4)*(5.6-31.2*q2+45.6*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*((v*(-12*r3+12*r3^2)*(2.8*q3^2-5.2*q3^3+3.8*q3^4-q3^5))+(1/s.^2)*(r3-

2*r3^3+r3^4)*(5.6-31.2*q3+45.6*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 
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delta =vpa(-u*((24*r4-12)*(2.8*q4^2-5.2*q4^3+3.8*q4^4-q4^5)+((2-v)/s^3)*(1-

6*r4^2+4*r4^3)*(5.6-31.2*q4+45.6*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(-12*r5+12*r5^2)*(5.6*r5-15.6*q5^2+15.2*q5^3-

5*q5^4)+(1/s.^3)*(r5-2*r5^3+r5^4)*(-31.2+91.2*q5-60*q5^2)),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(1-6*r6^2+4*r6^3)*(2.8*q6^2-5.2*q6^3+3.8*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7-2*r7^3+r7^4)*(5.6*r7-15.6*q7^2+15.2*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(x) CCFS Plate 

clc 

%PROGRAM FOR CCFS PLATE 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 2.8*q^2-5.2*q^3+3.8*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 
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y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 
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k = (1.5*r^2-2.5*r^3+r^4)*(2.8*q^2-5.2*q^3+3.8*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((3-15*r1+12*r1^2)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-

q1^5)+(v/s.^2)*(1.5*r1^2-2.5*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*((v*(3-15*r1+12*r1^2)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-

q1^5))+(1/s.^2)*(1.5*r1^2-2.5*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

myc = vpa(beta1*Q*a^2,5)  

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((3-15*r2+12*r2^2)*(2.8*q2^2-5.2*q2^3+3.8*q2^4-

q2^5)+(v/s.^2)*(1.5*r2^2-2.5*r2^3+r2^4)*(5.6-31.2*q2+45.6*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*((v*(3-15*r3+12*r3^2)*(2.8*q3^2-5.2*q3^3+3.8*q3^4-

q3^5))+(1/s.^2)*(1.5*r3^2-2.5*r3^3+r3^4)*(5.6-31.2*q3+45.6*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5)  

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-15)*(2.8*q4^2-5.2*q4^3+3.8*q4^4-q4^5)+((2-v)/s^3)*(3*r4-

7.5*r4^2+4*r4^3)*(5.6-31.2*q4+45.6*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 
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delta1 = vpa(-u*(((2-v)/s.^1)*(3-15*r5+12*r5^2)*(5.6*r5-15.6*q5^2+15.2*q5^3-

5*q5^4)+(1/s.^3)*(1.5*r5^2-2.5*r5^3+r5^4)*(-31.2+91.2*q5-60*q5^2)),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(3*r6-7.5*r6^2+4*r6^3)*(2.8*q6^2-5.2*q6^3+3.8*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(1.5*r7^2-2.5*r7^3+r7^4)*(5.6*r7-15.6*q7^2+15.2*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(xi) SCFC  Plate 

clc 

%PROGRAM FOR SCFC PLATE 

syms r q  

U = r^2-2*r^3+r^4; 

V = 2.33*q-3.33*q^3+3.33*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 
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diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r^2-2*r^3+r^4)*(2.33*q-3.33*q^3+3.33*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 
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%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 

%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((12*r1^2-12*r1+2)*(2.33*q1-3.33*q1^3+3.33*q1^4-q1^5)+(v/s.^2)*(r1^2-

2*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*(v*(12*r1^2-12*r1+2)*(2.33*q1-3.33*q1^3+3.33*q1^4-

q1^5)+(1/s.^2)*(r1^2-2*r1^3+r1^4)*(-20*q1+40*q1^2-20*q1^3)),5) 

Myc = vpa(beta1*Q*a^2,5)  

%Fixed edge Moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((12*r2^2-12*r2+2)*(2.33*q2-3.33*q2^3+3.33*q2^4-q2^5)+(v/s.^2)*(r2^2-

2*r2^3+r2^4)*(-20*q2+40*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*(v*(12*r3^2-12*r3+2)*(2.33*q3-3.33*q3^3+3.33*q3^4-

q3^5)+(1/s.^2)*(r3^2-2*r3^3+r3^4)*(-20*q3+40*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(2.33*q4-3.33*q4^3+3.33*q4^4-q4^5)+((2-v)/s.^2)*(2*r4-

6*r4^2+4*r4^3)*(-20*q4+40*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(2-12*r5+12*r5^2)*(2.33-10*q5^2+13.33*q5^3-

5*q5^4)+((1/s.^3)*(r5^2-2*r5^3+r5^4)*(-20+80*q5-60*q5^2))),5) 

Vy = vpa(delta1*Q*a,5) 
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%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(2*r6-6*r6+12*r6^2)*(2.33*q6-3.33*q6^3+3.33*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7^7-2*r7^3+r7^4)*(2.33-10*q7^2+13.33*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 

 

3. 3.1(xii) CCFC  Plate 

clc 

%PROGRAM FOR CCFC PLATE 

syms r q  

U = r^2-2*r^3+r^4; 

V = 2.8*q^2-5.2*q^3+3.8*q^4-q^5; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 
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z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

z5 = int(V^2,q,0,1); 

Y5 = y3*z5; 

Y6 = y2*z1; 

v = input('Enter value of poission ratio v:'); 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

h = input('Enter the thickness h(m):'); 

E = input('Enter the value of young modulus E:'); 

p = input('Enter the value of specific density p:'); 

echo on 

s = b/a 

echo off 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

%The flexural Rigidity of plate D is 

D = E*h^3/(12*(1-v^2)); 

r = input('Enter value of r for deflection r:'); 

q = input('Enter value of q for deflection q:'); 

k = (r^2-2*r^3+r^4)*(2.8*q^2-5.2*q^3+3.8*q^4-q^5); 

%Amplitude is 

A = u*Q*a^4/D; 

%deflection max 

alpha = vpa((u*k),5) 

Wmax = vpa((alpha*Q*a^4/D),5) 
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%Center Moment 

r1 = input('Enter value of r for center moment r1:'); 

q1 = input('Enter value of q for center moment q1:'); 

beta = vpa(-u*((2-12*r1+12*r1^2)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-q1^5)+(v/s.^2)*(r1^2-

2*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

Mxc = vpa(beta*Q*a^2,5) 

beta1 = vpa(-u*((v*(2-12*r1+12*r1^2)*(2.8*q1^2-5.2*q1^3+3.8*q1^4-

q1^5))+(1/s.^2)*(r1^2-2*r1^3+r1^4)*(5.6-31.2*q1+45.6*q1^2-20*q1^3)),5) 

myc = vpa(beta1*Q*a^2,5) 

%Fixed edge moment 

r2 = input('Enter the value for edge moment in X-D r2:'); 

q2 = input('Enter the value for edge moment in X-D q2:'); 

r3 = input('Enter the value for edge moment in Y-D r3:'); 

q3 = input('Enter the value for edge moment in Y-D q3:'); 

beta2 = vpa(-u*((2-12*r2+12*r2^2)*(2.8*q2^2-5.2*q2^3+3.8*q2^4-q2^5)+(v/s.^2)*(r2^2-

2*r2^3+r2^4)*(5.6-31.2*q2+45.6*q2^2-20*q2^3)),5) 

Mxe = vpa(beta2*Q*a^2,5) 

beta3 = vpa(-u*((v*(2-12*r3+12*r3^2)*(2.8*q3^2-5.2*q3^3+3.8*q3^4-

q3^5))+(1/s.^2)*(r3^2-2*r3^3+r3^4)*(5.6-31.2*q3+45.6*q3^2-20*q3^3)),5) 

Mye = vpa(beta3*Q*a^2,5) 

%Shear Force 

r4 = input('Enter the value for Vx r4:'); 

q4 = input('Enter the value for Vx q4:'); 

r5 = input('Enter the value for Vy r5:'); 

q5 = input('Enter the value for Vy q5:'); 

delta =vpa(-u*((24*r4-12)*(2.8*q4^2-5.2*q4^3+3.8*q4^4-q4^5)+((2-v)/s^3)*(2*r4-

6*r4^2+4*r4^3)*(5.6-31.2*q4+45.6*q4^2-20*q4^3)),5) 

Vx = vpa(delta*Q*a,5) 

delta1 = vpa(-u*(((2-v)/s.^1)*(2-12*r5+12*r5^2)*(5.6*r5-15.6*q5^2+15.2*q5^3-

5*q5^4)+(1/s.^3)*(r5^2-2*r5^3+r5^4)*(-31.2+91.2*q5-60*q5^2)),5) 

Vy = vpa(delta1*Q*a,5) 

%slope 

r6 = input('Enter the value for slopex r6:'); 

q6 = input('Enter the value for slopex q6:'); 



174 
 

r7 = input('Enter the value for slopey r7:'); 

q7 = input('Enter the value for slopey q7:'); 

yr = vpa((u*(2*r6-6*r6^2+4*r6^3)*(2.8*q6^2-5.2*q6^3+3.8*q6^4-q6^5))/D,5) 

slopex = vpa(yr*Q*a^3,5) 

yq = vpa((u*(r7^2-2*r7^3+r7^4)*(5.6*r7-15.6*q7^2+15.2*q7^3-5*q7^4))/(s*D),5) 

Slopey = vpa(yq*Q*a^3,5) 

%Bulkling Load or Resistant of the plate 

n = vpa((Y1+(2*Y3/s^2)+(Y2/s^4))/Y5,7) 

%in term Nx = n1*D/b^2 

n1 = n*s^2 

n2 = n1/pi^2 

Nx = vpa((n*D/a^2),7) 

%Fundamental Natural frequency 

f = vpa(sqrt((Y1+(2*Y3/s^2)+(Y2/s^4))/Y6),7) 

f1 = f/pi^2 

F = vpa((f/a^2)*sqrt(D/p*h),7) 
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APPENDIX 2 

ONE-WAY CONTINUOUS PLATE PROGRAM 

The program to analyze this plate is presented below: 

clear all 

%CONTINUOUS PLATE IN ONE DIRECTION (X-DIRECTION) PROGRAM 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

v = input('Enter poision ratio v:'); 

echo on 

s = b/a 

echo off 

%for SSSC span1 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = q-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 
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Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (0.5*r-1.5*r^3+r^4)*(q-2*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*((12*r^2-9*r)*(q-2*q^3+q^4)+(v/s.^2)*(0.5*r-1.5*r^3+r^4)*(12*q^2-

12*q)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for SCSC span2 

syms r q  

U = r^2-2*r^3+r^4; 

V = q-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 
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diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (r1^2-2*r1^3+r1^4)*(q1-2*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*((2-12*r1+12*r1^2)*(q1-2*q1^3+q1^4)+(v/s.^2)*(r1^2-

2*r1^3+r1^4)*(12*q1^2-12*q1)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for SCSC span3 

echo on 

%Edge moment 

echo off 

mxe2a = mxe1a 

mxe2b = mxe1b 

%for SCSS span4 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = q-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 
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(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u3 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r3 = input('Enter r3 value at support 4 r3:'); 

q3 = input('Enter q3 value at support 4 q3:'); 

k3 = (1.5*r3^2-2.5*r3^3+r3^4)*(q3-2*q3^3+q3^4); 

echo on 

%Edge moment 

echo off 

beta3 = vpa(-u3*((3-15*r3+12*r3^2)*(q3-2*q3^3+q3^4)+(v/s.^2)*(1.5*r3^2-

2*r3^3+r3^4)*(12*q3^2-12*q3)),5); 

mxe3 = vpa(beta3*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = mxe2b-mxe3 

f5 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 
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FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

K4 = K1; 

%global stiffness K 

K = [4 2 0 0 0; 2 8 2 0 0; 0 2 8 2 0; 0 0 2 8 2; 0 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4; f5]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4; theta5] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the values of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

theta5 = input('theta5:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 

thetad = [theta4; theta5]; 

md12 = K1*thetaa 

md23 = K2*thetab 

md34 = K3*thetac 
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md45 = K4*thetad 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; mxe2b; mxe3; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; mxe2b]; 

fem45 = [mxe3; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

m45 = fem45-md45 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

ms44 = input('Enter monent at support 4 member 4:'); 

ms54 = input('Enter monent at support 5 member 4:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 

mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 
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mavs4 = (ms43+ms44)*0.5 

mavs5 = ms54 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

mspan45 = c-((mavs4+mavs5)*0.5) 

R = 0:0.125:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4 -mspan45 mavs5]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for Single Continuous plate') 

 

 

 

 

 

 

 

 

 

 

 

 

 



182 
 

 

 

 

 

 

 

 

APPENDIX 3 

TWO-WAY CONTINUOUS PLATE PROGRAM 

The program to analyze this plate is as follows: 

clear all 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP S-S IN X-DIRECTION 

PROGRAM 

a = input('Enter the horizontal dimension a(m):'); 

b = input('Enter the vertical dimension b(m):'); 

Q = input('Enter the udl Q(kN/m):'); 

v = input('Enter poision ratio v:'); 

echo on 

s = b/a 

echo off 

%for SSSC span1 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 
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z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (0.5*r-1.5*r^3+r^4)*(0.5*q-1.5*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*((12*r^2-9*r)*(0.5*q-1.5*q^3+q^4)+(v/s.^2)*(0.5*r-1.5*r^3+r^4)*(12*q^2-

9*q)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for SCSC span2 

syms r q  

U = r^2-2*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 



184 
 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (r1^2-2*r1^3+r1^4)*(0.5*q1-1.5*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*((2-12*r1+12*r1^2)*(0.5*q1-1.5*q1^3+q1^4)+(v/s.^2)*(r1^2-

2*r1^3+r1^4)*(12*q1^2-9*q1)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for SCSC span3 

echo on 

%Edge moment 

echo off 

mxe2a = mxe1a 

mxe2b = mxe1b 

%for SCSS span4 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 
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diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u3 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r3 = input('Enter r3 value at support 4 r3:'); 

q3 = input('Enter q3 value at support 4 q3:'); 

k3 = (1.5*r3^2-2.5*r3^3+r3^4)*(0.5*q3-1.5*q3^3+q3^4); 

echo on 

%Edge moment 

echo off 

beta3 = vpa(-u3*((3-15*r3+12*r3^2)*(0.5*q3-1.5*q3^3+q3^4)+(v/s.^2)*(1.5*r3^2-

2.5*r3^3+r3^4)*(12*q3^2-9*q3)),5); 

mxe3 = vpa(beta3*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = mxe2b-mxe3 

f5 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 
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%flexural rigidity (EI) = FR 

FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

K4 = K1; 

%global stiffness K 

K = [4 2 0 0 0; 2 8 2 0 0; 0 2 8 2 0; 0 0 2 8 2; 0 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4; f5]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4; theta5] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

theta5 = input('theta5:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 

thetad = [theta4; theta5]; 

md12 = K1*thetaa 

md23 = K2*thetab 
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md34 = K3*thetac 

md45 = K4*thetad 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; mxe2b; mxe3; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; mxe2b]; 

fem45 = [mxe3; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

m45 = fem45-md45 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32]  

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

ms44 = input('Enter monent at support 4 member 4:'); 

ms54 = input('Enter monent at support 5 member 4:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 

mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 
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mavs4 = (ms43+ms44)*0.5 

mavs5 = ms54 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

mspan45 = c-((mavs4+mavs5)*0.5) 

R = 0:0.125:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4 -mspan45 mavs5]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for Strip S-S 2way Continuous plate') 

hold on 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP T-T IN X-DIRECTION 

PROGRAM 

echo off 

%for CSCC span1 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 
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y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (0.5*r-1.5*r^3+r^4)*(q^2-2*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*((12*r^2-9*r)*(q^2-2*q^3+q^4)+(v/s.^2)*(0.5*r-1.5*r^3+r^4)*(2-12*q-

12*q^2)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for scsc span2 

syms r q  

U = r^2-2*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 
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Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (r1^2-2*r1^3+r1^4)*(q1^2-2*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*((2-12*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(v/s.^2)*(r1^2-2*r1^3+r1^4)*(2-

12*q1+12*q1^2)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for scsc span3 

echo on 

%Edge moment 

echo off 

mxe2a = mxe1a 

mxe2b = mxe1b 

%for scss span4 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 
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Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u3 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r3 = input('Enter r3 value at support 4 r3:'); 

q3 = input('Enter q3 value at support 4 q3:'); 

k3 = (1.5*r3^2-2.5*r3^3+r3^4)*(q3^2-2*q3^3+q3^4); 

echo on 

%Edge moment 

echo off 

beta3 = vpa(-u3*((3-15*r3+12*r3^2)*(q3^2-2*q3^3+q3^4)+(v/s.^2)*(1.5*r3^2-

2*r3^3+r3^4)*(2-12*q3+12*q3^2)),5); 

mxe3 = vpa(beta3*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = mxe2b-mxe3 

f5 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 
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I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 

FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

K4 = K1; 

%global stiffness K 

K = [4 2 0 0 0; 2 8 2 0 0; 0 2 8 2 0; 0 0 2 8 2; 0 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4; f5]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4; theta5] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

theta5 = input('theta5:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 

thetad = [theta4; theta5]; 

md12 = K1*thetaa 
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md23 = K2*thetab 

md34 = K3*thetac 

md45 = K4*thetad 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; mxe2b; mxe3; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; mxe2b]; 

fem45 = [mxe3; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

m45 = fem45-md45 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

ms44 = input('Enter monent at support 4 member 4:'); 

ms54 = input('Enter monent at support 5 member 4:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 
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mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 

mavs4 = (ms43+ms44)*0.5 

mavs5 = ms54 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

mspan45 = c-((mavs4+mavs5)*0.5) 

R = 0:0.125:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4 -mspan45 mavs5]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for strip T-T 2way Continuous plate') 

hold on 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP Sb-Sb IN X-DIRECTION 

PROGRAM 

echo off 

%for CSSC span1 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 
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diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (0.5*r-1.5*r^3+r^4)*(1.5*q^2-2.5*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*((12*r^2-9*r)*(1.5*q^2-2.5*q^3+q^4)+(v/s.^2)*(0.5*r-1.5*r^3+r^4)*(3-

15*q+12*q^2)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for CCSC span2 

syms r q  

U = r^2-2*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 
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y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (r1^2-2*r1^3+r1^4)*(1.5*q1^2-2.5*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*((2-12*r1+12*r1^2)*(1.5*q1^2-2.5*q1^3+q1^4)+(v/s.^2)*(r1^2-

2*r1^3+r1^4)*(3-15*q1+12*q1^2)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for CCSC span3 

echo on 

%Edge moment 

echo off 

mxe2a = mxe1a 

mxe2b = mxe1b 

%for CCSS span4 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 
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y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u3 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r3 = input('Enter r3 value at support 4 r3:'); 

q3 = input('Enter q3 value at support 4 q3:'); 

k3 = (1.5*r3^2-2.5*r3^3+r3^4)*(1.5*q3^2-2.5*q3^3+q3^4); 

echo on 

%Edge moment 

echo off 

beta3 = vpa(-u3*((3-15*r3+12*r3^2)*(1.5*q3^2-2.5*q3^3+q3^4)+(v/s.^2)*(1.5*r3^2-

2*r3^3+r3^4)*(3-15*q3+12*q3^2)),5); 

mxe3 = vpa(beta3*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = mxe2b-mxe3 

f5 = 0 
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%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 

FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

K4 = K1; 

%global stiffness K 

K = [4 2 0 0 0; 2 8 2 0 0; 0 2 8 2 0; 0 0 2 8 2; 0 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4; f5]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4; theta5] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

theta5 = input('theta5:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 
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thetad = [theta4; theta5]; 

md12 = K1*thetaa 

md23 = K2*thetab 

md34 = K3*thetac 

md45 = K4*thetad 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; mxe2b; mxe3; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; mxe2b]; 

fem45 = [mxe3; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

m45 = fem45-md45 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

ms44 = input('Enter monent at support 4 member 4:'); 

ms54 = input('Enter monent at support 5 member 4:'); 

echo on 

%average final support moment  
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echo off 

mavs1 = ms11 

mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 

mavs4 = (ms43+ms44)*0.5 

mavs5 = ms54 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

mspan45 = c-((mavs4+mavs5)*0.5) 

R = 0:0.125:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4 -mspan45 mavs5]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for Single Continuous plate') 

hold on 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP 1-1 IN Y-DIRECTION 

PROGRAM 

echo off 

%for SSCC span1 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 
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z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (0.5*r-1.5*r^3+r^4)*(0.5*q-1.5*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*(v*(12*r^2-9*r)*(0.5*q-1.5*q^3+q^4)+(1/s.^2)*(0.5*r-1.5*r^3+r^4)*(12*q^2-

9*q)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for CSCC span2 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 
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diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (0.5*r1-1.5*r1^3+r1^4)*(q1^2-2*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*(v*(12*r1^2-9*r1)*(q1^2-2*q1^3+q1^4)+(1/s.^2)*(0.5*r1-

1.5*r1^3+r1^4)*(2-12*q1+12*q1^2)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for CSSC span3 

syms r q  

U = 0.5*r-1.5*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 
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(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u2 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r2 = input('Enter r2 value at support 4 r2:'); 

q2 = input('Enter q2 value at support 4 q2:'); 

k2 = (0.5*r2-1.5*r2^3+r2^4)*(1.5*q2^2-2.5*q2^3+q2^4); 

echo on 

%Edge moment 

echo off 

beta2 = vpa(-u2*(v*(12*r2^2-9*r2)*(1.5*q2^2-2.5*q2^3+q2^4)+(1/s.^2)*(0.5*r2-

1.5*r2^3+r2^4)*(3-15*q2+12*q2^2)),5); 

mxe2a = vpa(beta2*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 

FR = E*I; 
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A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

%global stiffness K 

K = [4 2 0 0 ; 2 8 2 0 ; 0 2 8 2 ; 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 

md12 = K1*thetaa 

md23 = K2*thetab 

md34 = K3*thetac 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; 0]; 

echo on 

%Final Support moment(m) 
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echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 

mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 

mavs4 = ms43 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 
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R = 0:0.166666666:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for strip 1-1 2way Continuous plate') 

hold on 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP 2-2 IN Y-DIRECTION 

PROGRAM 

echo off 

%for SCCC span1 

syms r q  

U = r^2-2*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 
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u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (r^2-2*r^3+r^4)*(0.5*q-1.5*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*(v*(2-12*r+12*r^2)*(0.5*q-1.5*q^3+q^4)+(1/s.^2)*(r^2-2*r^3+r^4)*(12*q^2-

9*q)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for CCCC span2 

syms r q  

U = r^2-2*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 
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q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (r1^2-2*r1^3+r1^4)*(q1^2-2*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*(v*(2-12*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(1/s.^2)*(r1^2-

2*r1^3+r1^4)*(2-12*q1+12*q1^2)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for CCSC span3 

syms r q  

U = r^2-2*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u2 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r2 = input('Enter r2 value at support 4 r2:'); 

q2 = input('Enter q2 value at support 4 q2:'); 
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k2 = (r2^2-2*r2^3+r2^4)*(1.5*q2^2-2.5*q2^3+q2^4); 

echo on 

%Edge moment 

echo off 

beta2 = vpa(-u2*(v*(2-12*r2+12*r2^2)*(1.5*q2^2-2.5*q2^3+q2^4)+(1/s.^2)*(r2^2-

2*r2^3+r2^4)*(3-15*q2+12*q2^2)),5); 

mxe2a = vpa(beta2*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 

f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 

FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

%global stiffness K 

K = [4 2 0 0 ; 2 8 2 0 ; 0 2 8 2 ; 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4] 

echo off 

theta = K\F 
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%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 

thetac = [theta3; theta4]; 

md12 = K1*thetaa 

md23 = K2*thetab 

md34 = K3*thetac 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 
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ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 

mavs2 = (ms21ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 

mavs4 = ms43 

echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

R = 0:0.166666666:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for Strip 2-2 & 2b-2b 2way Continuous plate') 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP 2b-2b IN Y-DIRECTION 

PROGRAM 

%strip 2-2 and strip 2b-2b) ie span 2 and 3 are the same. 

echo off 

echo on 

%CONTINUOUS PLATE IN TWO DIRECTION STRIP 1b-1b IN Y-DIRECTION 

PROGRAM 
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echo off 

%for SCCS span1 

syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = 0.5*q-1.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r = input('Enter r value at support 2 r:'); 

q = input('Enter q value at support 2 q:'); 

k = (1.5*r^2-2.5*r^3+r^4)*(0.5*q-1.5*q^3+q^4); 

echo on 

%Edge moment 

echo off 

beta = vpa(-u*(v*(3-15*r+12*r^2)*(0.5*q-1.5*q^3+q^4)+(1/s.^2)*(1.5*r-

2.5*r^3+r^4)*(12*q^2-9*q)),5); 

mxe = vpa(beta*Q*a^2,5) 

%for CCCS span2 
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syms r q  

U = 1.5*r^2-2.5*r^3+r^4; 

V = q^2-2*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u1 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5); 

r1 = input('Enter r1 value at support 2 r1:'); 

q1 = input('Enter q1 value at support 2 q1:'); 

k1 = (1.5*r1^2-2.5*r1^3+r1^4)*(q1^2-2*q1^3+q1^4); 

echo on 

%Edge moment 

echo off 

beta1 = vpa(-u1*(v*(3-15*r1+12*r1^2)*(q1^2-2*q1^3+q1^4)+(1/s.^2)*(1.5*r1-

2.5*r1^3+r1^4)*(2-12*q1+12*q1^2)),5); 

mxe1a = vpa(beta1*Q*a^2,5) 

mxe1b = mxe1a 

%for CCSS span3 

syms r q  
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U = 1.5*r^2-2.5*r^3+r^4; 

V = 1.5*q^2-2.5*q^3+q^4; 

diff(U,2); 

(diff(U,2))^2; 

y1 = int((diff(U,2))^2,r,0,1); 

z1 = int(V^2,q,0,1); 

Y1 = y1*z1; 

diff(V,2); 

(diff(V,2))^2; 

y2 = int(U^2,r,0,1); 

z2 = int((diff(V,2))^2,q,0,1); 

Y2 = y2*z2; 

diff(U,1); 

diff(V,1); 

y3 = int((diff(U,1))^2,r,0,1); 

z3 = int((diff(V,1))^2,q,0,1); 

Y3 = y3*z3; 

y4 = int(U,r,0,1); 

z4 = int(V,q,0,1); 

Y4 = y4*z4; 

u2 = vpa(Y4/(Y1+(2*Y3/s^2)+(Y2/s^4)),5) 

r2 = input('Enter r2 value at support 4 r2:'); 

q2 = input('Enter q2 value at support 4 q2:'); 

k2 = (1.5*r2-2.5*r2^3+r2^4)*(1.5*q2^2-2.5*q2^3+q2^4); 

echo on 

%Edge moment 

echo off 

beta2 = vpa(-u2*(v*(3-15*r2+12*r2^2)*(1.5*q2^2-2.5*q2^3+q2^4)+(1/s.^2)*(1.5*r2^2-

2.5*r2^3+r2^4)*(3-15*q2+12*q2^2)),5); 

mxe2a = vpa(beta2*Q*a^2,5) 

echo on 

%Fixed end moment at each support(starting from left to right of the plate span) 

echo off 

f1 = 0 
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f2 = mxe-mxe1a 

f3 = mxe1b-mxe2a 

f4 = 0 

%using element stiffness method of analysis 

E = input('young modulus E:'); 

I = input('second moment of inertia I:') 

%flexural rigidity (EI) = FR 

FR = E*I; 

A = [4 2; 2 4]; 

%element stiffness 

K1 = A.*FR; 

K2 = K1; 

K3 = K1; 

%global stiffness K 

K = [4 2 0 0 ; 2 8 2 0 ; 0 2 8 2 ; 0 0 2 4]; 

f = Q*a^2 

B = [f1; f2; f3; f4]; 

F = B.*f 

echo on 

%F = K*theta, hence, theta = inv(K)*F 

%theta = [theta1; theta2; theta3; theta4] 

echo off 

theta = K\F 

%For member forces(md) 

%md = [md..; md..] 

echo on 

%enter the valuues of terms of theta matrix above. 

echo off 

theta1 = input('theta1:'); 

theta2 = input('theta2:'); 

theta3 = input('theta3:'); 

theta4 = input('theta4:'); 

thetaa = [theta1; theta2]; 

thetab = [theta2; theta3]; 
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thetac = [theta3; theta4]; 

md12 = K1*thetaa 

md23 = K2*thetab 

md34 = K3*thetac 

%Fixed end or edge moment 

fem = [0; mxe; mxe1a; mxe1b; mxe2a; 0]; 

echo on 

%Final Support moment(m) 

echo off 

%m = fem-md, m12 = 

fem12 = [0; mxe]; 

fem23 = [mxe1a; mxe1b]; 

fem34 = [mxe2a; 0]; 

m12 = fem12-md12 

m23 = fem23-md23 

m34 = fem34-md34 

%Average final Support monent(mavs) is mavs... = (m21+m22)/2 

echo on 

%input the positive values of m matrix above. note: m12 = [ms11;ms21], m23 = [m22;m32] 

... 

echo off 

ms11 = input('Enter monent at support 1 member 1:'); 

ms21 = input('Enter monent at support 2 member 1:'); 

ms22 = input('Enter monent at support 2 member 2:'); 

ms32 = input('Enter monent at support 3 member 2:'); 

ms33 = input('Enter monent at support 3 member 3:'); 

ms43 = input('Enter monent at support 4 member 3:'); 

echo on 

%average final support moment  

echo off 

mavs1 = ms11 

mavs2 = (ms21+ms22)*0.5 

mavs3 = (ms32+ms33)*0.5 

mavs4 = ms43 
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echo on 

%Span Moment(mspan) 

echo off 

%mspan = 0.125*Q*a^2-(mst+mst)*o.5 

c = 0.125*Q*a^2; 

mspan12 = c-((mavs1+mavs2)*0.5) 

mspan23 = c-((mavs2+mavs3)*0.5) 

mspan34 = c-((mavs3+mavs4)*0.5) 

R = 0:0.166666666:1; 

bm = [mavs1 -mspan12 mavs2 -mspan23 mavs3 -mspan34 mavs4]; 

plot(R,bm,'r-') 

grid 

xlabel('R'); 

ylabel('bm'); 

title('BMD for strip 1b-1b 2way Continuous plate') 
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