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ABSTRACT 

 

 

      In this work a deterministic and stochastic model is developed to investigate the 

deterministic and stochastic model of dynamics of Ebola virus. The model includes 

susceptible, exposed, infected, quarantined and removed or recovered individuals. The 

model used in this work is based on a deterministic model. The Chowell (2015) work on 

early detection of Ebola is modified by introducing an assumption that the quarantined 

class is totally successful and cannot infect the susceptible class. The resulting model is 

transformed into a stochastic model and solved using the Euler Maruyama method. We 

are able to develop and analyze a Model with an effective isolation of infected individual 

and its effect to the Infectious and Quarantined classes are analyzed in our Simulation. 

It is seen that the disease will produce an epidemic and after some time. 

 

 

Keywords and phrases: Stochastic model, Ebola, Jacobian, Wiener process



1 
 

 

CHAPTER ONE 

INTRODUCTION 

1.1   BACKGROUND OF STUDY 

Ebola virus disease formerly called Ebola hemorrhagic fever is a highly infectious 

and lethal disease named after a river in the Democratic Republic of Congo (formerly 

Zaire), where it was formerly identified in 1976. Ebola is transmitted by physical contact 

with body fluids, tissues, semen, or secretion from the infected persons. The onset of 

Ebola is characterized by severe headaches, malaise, fever, vomiting, bloody diarrhea 

and rashes, severe bleeding and shock which usually followed by death. Ebola is a 

unique member of ribonucleic acid virus family which has no known natural reservoir. 

Diagnosis of Ebola is difficult since it is frequently misdiagnosed as a typhoid and 

malaria. If Ebola virus contacts a person’s skin, this does not mean the person is 

automatically infected by the virus. The virus is not active until it gains access into a 

person’s mucous membrane because people touch these parts of the body with their 

fingers. The hands are very important, this is why we encourage people to wash their 

hands often and rub sanitizers.  

Finally, Ebola can be frequently transmitted where infection control mechanisms 

are not in practice.   

1.2 TRANSMISSION/CAUSES OF EBOLA DISEASE 

It is entirely clear how Ebola is spread. EVD is believed to occur after an Ebola virus is 

transmitted to an initial human by contact with an infected animal’s body fluids. Human- 

to- human transmission can occur via direct contact with blood or bodily fluids from an 

infected person (including embalming of an infected dead person) or by contact with 

contaminated medical equipment, particularly needles and syringes. Semen is 

infectious in survivors for up to 50 days.  Transmission through oral exposure and 

through conjunctiva exposure is likely and has been confirmed in non-human primates. 

The potential for widespread EVD infections is considered low as the disease is only 

spread by direct contact with the secretions from someone who is showing signs of 

infection.  The quick onset of symptoms makes it easier to identify sick individuals and 
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limits a person’s ability to spread the disease by traveling. Because dead bodies are still 

infectious, some doctors disposed of them in a safe manner, despite local traditional 

burial rituals. Medical worker who do not wear appropriate protective clothing may also 

contact the disease. In the past, hospital- acquired transmission has occurred in African 

hospitals due to the reuse of needles and lack of universal precautions. Airborne 

transmission has been documented during previous EVD outbreaks. They are, 

however, infectious as breathable 0.8-1.2 micrometer laboratory generated droplets; 

because of this potential route of infection, these viruses have been classified as 

category A biological weapons. Recently the virus has been shown to travel without 

contact from pigs to non-human primates. Bats drop partially eaten fruit and pulp, then 

land mammals such as gorillas and duikers feed on these fallen fruits. This chain of 

events forms a possible indirect means of transmission from the natural host to animal 

populations, which has led to research towards viral shedding in the saliva of bats.   

      Fruit production, animal behavior, and other factors vary at different times and 

places that may trigger outbreaks among animal populations. 

1.3 RESERVOIR AND TREATMENT OF EBOLA DISEASE 

   Human consumption of equatorial animals in Africa in the form of bush meat has been 

linked to the transmission of diseases to people, including Ebola. Bats are considered 

the most likely natural reservoir of the Ebola virus (EBOV); plants, arthropods, and birds 

have also been considered. Bats were known to reside in the cotton factory in which the 

first cases for the 1976 and 1979 outbreaks were employed, and they have been 

implicated in Marburg virus infections in 1975 and 1980. Of 24 plant species and 19 

vertebrate species experimentally inoculated with ENOV, only bats became infected.            

         The absence of clinical signs in these bats is characteristic of a reservoir species. 

In a 2002-2003 survey of 1,030 animals including 679 bats from Gabon and the 

Republic of the Congo, 13 fruit bats were found to contain EBOV RNA fragments. As of 

2005, three types of fruit bats (Hypsignathus, Epomopsfranqueti, and 

Myonycteristorquata) have been identified as being in contact with EBOV reservoir 

hosts. Antibodies against Ebola represent the Ebola Zaire and Reston viruses have 

been found in fruit bats in Bangladesh, thus identifying potential virus hosts and signs of 

the filoviruses in Asia. 
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between 1976 and 1998, in 30,000 mammals, birds, reptiles, amphibians, and 

arthropods sampled from outbreak regions, no Ebola virus was detected apart from 

some genetic traces found in six rodents (Mussetulosus and praomys) and one shrew 

(Sylvisorexollula) collected from the Central African Republic. Traces of EBOV were 

detected in the carcass of gorillas and chimpanzees during outbreaks in 2001 and 2003, 

which later became the source of human infections. However, the high lethality from 

infection in these species makes them unlikely as a natural reservoir. Nigeria currently 

has 10 confirmed cases of Ebola, all stemming from the trip of an infected Liberian-

American, Patrick Sawyer, to Africa’s most populous nation on July 20. Experimental 

drugs never before tested in humans can be used to treat Ebola victims n West Africa, 

the World Health Organization (WHO) has said, as the worst toll from the worst 

outbreak of the virus history rose above 1,000.The WHO’s decision, a reflection of the 

unprecedented scale of the crisis, means that an experimental serum, which has 

already been used on three Ebola patient –two Americans and a Spaniard-will be 

dispatched to affected countries. However, the US manufacturer said that its very 

limited stock of drug had already run out, and that it would take months to develop 

more. Liberia said it would be the first African country to receive the drug, known as 

ZMapp. However, it will only be used on who have given their consent. The 

manufacture, a San Diego biopharmaceutical firm Mapp, said that a delivery to an 

unnamed West African country had exhausted its supply, which is thought to have 

amounted only to around 10 doses.  

           There is no cure for Ebola, but some victims do survive. The WHO’s ethics panel 

said that there was “a moral obligation” for health authorities to collect and share data 

on the effectiveness of experimental drugs deployed in the current outbreak. Efforts to 

combat the disease with untested medicine could in effect become the biggest ever 

clinical trial of drugs to combat Ebola. The rarity of the disease, and the fact it has only 

ever affected poor African countries, means there is a paucity of clinical evidence on 

effective treatments. Amid growing anger in West African that, until today, the only 

people to receive ZMapp have been Westerners, one WHO official said that shortage 

was as a result of “market failure”. It’s a market failure because this is typically a 

disease of poor people in poor countries and so there is no market,” said Marie-Paul 

Kieny, assistant director general of the WHO, as a result there are “no clinical 
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stockpiles”, she said, calling on manufactures and governments to accelerate 

development and scale up as quickly as possible. However, the drug has had mixed 

success so far. Two American aid workers treated with it are said to be improving after 

being repatriated to the US. But a Spanish missionary priest, 75-year-old Father Miguel 

Pajares, who had been treated with ZMapp at a hospital in Madrid, has died. Despite 

early media reports of a “miracle” drug, some experts are skeptical that the 

experimental treatment can play a major role in combating the outbreak. In a statement, 

released following a high-level meeting of infectious disease experts and ethicists, the 

WHO said that it remained the case that the Ebola outbreak could be contained by 

“available interventions like early detection and isolation, contact tracing and like early 

detection and isolation, contact tracing and monitoring and adherence to rigorous 

procedures of infection control”.  

         The failure of the three countries worst hit by the outbreak-Guinea, Sierra Leone 

and Liberia-to slow the spread of Ebola is largely attributable to failure to implements 

such measures effectively. In Liberia, ministers have said the health care system has 

been “overtaxed and overstretched” by Ebola, and all three countries have been forced 

to introduce extreme infection control measures. Guinea has shut its borders with its 

two Ebola-hit neighbours, while Sierra Leone and Liberia have both deployed the 

military to control movement from the worst-hit rural communities into urban centers. 

Since the end of last month, when the virus spread to Africa’s most populous country 

Nigeria headlines around the world have focused on the risk of the disease spreading 

beyond Africa, but Fr. Pajares remains the only European person to die in the outbreak. 

in the meantime, death toll in West Africa has continued to mount. The WHO said that 

the number of confirmed, probable or suspected cases had risen to 1,848, with 1,013 

deaths, a mortality rate of 55 per cent. Some aid agencies have been critical of the 

international response to a disease that has struck three countries with poorly 

developed healthcare systems. Medecins Sans Frontieres has said that lives are being 

lost because of the slow response and the WHO has warned about shortages of even 

the most basic medical equipment required to stop the virus spreading to healthcare 

workers treating victims.        
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      The outbreak, which began in Guinea, has been growing since February, but it is 

only in recent weeks that aid commitments have been stepped up. A Liberian- 

American, Patrick Sawyer, entered Nigeria on July 20. Sawyer fell ill and collapsed in 

the Lagos airport. He died at a city hospital few days later two health care workers who 

treated him contracted Ebola and later died. 

     A Nigerian nurse suspected of having Ebola, who had contact with the index patient, 

late Patrick Sawyer, managed to skip quarantine in Lagos to travel nearly 300 miles to 

see family, officials said. She and the 20 people she came into contact with are now 

under surveillance in the city of Enugu in southeastern Nigeria. Transmission between 

natural reservoir and humans is rare, and outbreaks are usually traceable to a single 

case where an individual has handled the carcass of gorilla, chimpanzee, or duiker. 

Fruit bats are also eaten by people in parts of West where they are smoked, grilled or 

made into a spicy soup. 

1.4 STRUCTURE 

Like all filoviruses, Ebola virus is filamentous particles that may appear in the 

shape of a shepherd’s crook or in the shape of a “U”, and they may be coiled, torrid, or 

branched. In general, Ebola virus is 80mm in width, but varies somewhat in length. In 

general, the median particle length of Ebola virus ranges from 974 to 1,086mm (in 

contrast to marburgvirus, whose median particle length was measured at 795- 828mm), 

but particles as long as 14,000mm have been detected in tissue culture. 
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1.5  STATEMENT OF PROBLEM 

We are faced with the need to stop the spread of Ebola virus in an Ebola 

encroached environment. If the infected person does not recover, death due to multiple 

organ dysfunction syndromes occurs within 7 to 16 days (usually between days 8 and 9) 

after first symptoms. There is therefore the need to investigate the spread of Ebola virus 

with an assumption that isolation of Ebola infected individuals is completely effective 

and that recruitment of individuals into the Susceptible class is either by birth or by 

migration. 

1.6 OBJECTIVES OF STUDY 

The objective of studying the deterministic & stochastic model of dynamics of Ebola 

virus are: 

i.  To investigate various ways by which susceptible individuals can contact the             

virus and to see if there can be a reduction in the effective contact rate of the 

Susceptible individuals and Infected Class.  
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ii. To analyse the similarities and differences between deterministic & stochastic 

model of Ebola virus. 

1.7 SIGNIFICANCE OF STUDY: The study of deterministic and stochastic model of 

dynamics of Ebola virus is so important to both health workers and individuals since it 

creates awareness of the possible ways of inhibiting a successful contact of an Ebola 

patient with a susceptible individual. 

1.8 SCOPE OF STUDY: This research work is subject to assumptions used in our 

modeling procedures and is limited in scope of Ebola epidemic model. We used 

dynamical system theory method in our deterministic model and Euler Maruyama’s 

method in our stochastic modeling, hence other methods employed which are different 

from the one we used may give us slightly different results. 

Since it is impossible for us to collect all the data used in all the Ebola outbreaks and 

explore the facet, we hereby admit that this work is narrow in scope and subject to 

limitation. 

 

1.9                                DEFINITION OF TERMS 

1.9.1 PROBABILITY MEASURE: The probability measure P is a set function that map 

and P is called the probability measure if the following properties holds: 

(i) P(  

(ii) P(  

(i) P( )=  if  for  

1.9.2 ALGEBRA: Algebra over a field is a vector space equipped with a bilinear 

product. It is a set, together with operations of multiplication, addition and scalar 

multiplication. 

Let  be an arbitrary set. A collection of subsets of  is an algebra on  if 

(ii)  if  A  

(iii) if  
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1.9.3  - ALGEBRA: An algebra (  field) on a set, is a collection of subsets of that set, 

that is closed under a countable set operators. Let  be an arbitrary set. A collection 

of subsets of  is a -algebra on  if 

(i)  if  A  

(ii) if  

1.9.4  CANONICAL DECOMPOSITION: Let S be a state space of a Markov 

chain . Let , ,… be its recurrent classes, and , ,… the transient ones, and 

let T= be their union. The decomposition S=  is called 

canonical of the (state Space) of the Markov chain . 

1.9.5  PROBABILITY SPACE: The triple ( consisting of the sample space , the 

– algebra  of subsets of and the probability measure , defined on    is called a  

1.9.6  RANDOM VARIABLE: A Random Variable on a probability space  is 

real valued function  with  for every  

 

1.9.7  DISCRETE RANDOM VARIABLES: A random variable  is said to be 

discrete if it takes at most, countable values. 

Y is said to be discrete, if there exist a finite or countable set S ,   

The probability of any discrete random variables Y is usually described in the table 

below: 

Y  where the top row list all the elements of S (the support of Y) and the 

bottom row lists their respective probabilities (  
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1.9.8  MARKOV PROCESS: A continuous-time stochastic process 

 with state space  and index set  is called a Markov Process, if 

for any  and  , the Markov property: 

holds. 

The above definition is equivalent to stating that the probability distribution of  

depends only on results in most recent time and is independent of past history. 

1.9.9  STOCHASTIC PROCESS: A stochastic process is a collection of random 

variables   where  is the parameter space and is the state 

space.    The index set often represents time, such as or 

. Time can be discrete or continuous.   

1.9.10 TRANSITION PROBABILITY: This is the probability of moving from a given 

state to the next state in a Markov process. 

1.9.11 MARKOV CHAIN: A Markov chain is a random (stochastic) process that 

undergoes transitions 

 Time-homogeneous Markov chains (or stationary Markov chains) are 

processes where 

 

for all n. The probability of the transition is independent of n. 

 A Markov chain of order m (or a Markov chain with memory m), 

where m is finite, is a process satisfying 
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In other words, the future state depends on the past m states. It is 

possible to construct a chain (Yn) from (Xn) which has the 'classical' 

Markov property by taking as state space the ordered m-tuples of X 

values, ie. Yn = (Xn, Xn−1, ...,Xn−m+1). 

 

1.9.12 ITO PROCESS: An Ito process or a stochastic integral is a stochastic process on 

a probability space  which can be represented in the form 

0 0

( ) (0) ( ) ( )
t t

X t X U s ds V s ds     

Where U and V are some processes in 2H . 2H is the space of processes  such that 

t R . 

1.9.13 SAMPLE PATH: A sample path of a stochastic process is a particular realization 

of the process, i.e. a particular set of values  for all  (which may be discrete or 

continuous), according to the stochastic rules of the process. 

1.9.14 BROWNIAN MOTION: A Brownian motion is a random walk with a random step 

sizes. It is the most common example of Wiener process. Stochastic process 

 is called a Brownian motion if  

1. All increments  are normally distributed with the mean value  

and variance . 
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2. given a series of times , the 

increments  are independent  random 

variables. 

3. and the sample paths are continuous almost surely. 

1.9.15 GEOMETRIC BROWNIAN MOTION: If  is a Brownian motion with 

parameters and , and we define a new stochastic process  by taking 

  where  is a given constant, then the process  is called 

the Geometric Brownian motion. 

1.9.16 WIENER PROCESS: A Wiener process  is a continuous time 

stochastic process named after Nobert Wiener. It is called standard Brownian motion, 

after Robert Brown. It is also a Brownian motion with mean  and variance . 

A Wiener process has the following stochastic distribution:  

1.9.17 STOCHASTIC DIFFERENTIAL EQUATION (SDE): A stochastic differential 

equation is a differential equation in which one or more of its terms are a stochastic 

process. It has both drift and diffusion coefficients which depend only on the new value 

of the process. The  dimensional stochastic differential equation is given by 

 

where 

and  

is the drift vector,  is the diffusion coefficient and  is a standard Wiener 

process. Also, in matrix form, it is given by  

1.9.18 EXPECTATION: For any discrete random variables Y with support, we define the 

expectation  of Y by  
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Let Y be a discrete random variables 

 If the expectation  exists, we say that y is integrable 

 If , y is called a square integrable 

 If , for some  we say that y has a finite  moment 

 If y has a finite  moment and the expectation  exists, we call it 

 central moment 

1.9.19 CHAPMAN – KOLMOGOROV RELATION: For  we have 

 

The statement follows directly from the matrix equality  

 

 

 

 

CHAPTER TWO 
LITERATURE REVIEW 

2:1  INTRODUCTION 
           This chapter reviews the works of other researchers relative to the objective of 

this thesis; Zach Yarus et al. (2012) stated a mathematical look at the Ebola virus, in his 

paper an epidemic was created from first order differential equations to describe how 

Ebola virus could potentially ravage a population. In his model he use the same number 

of population as the population that were living in Karispell, Montania. 

2.2  THE SUSCEPTIBLE-INFECTIOUS-RECOVERED (SIR) MODELS 
          Arreola et al. (1999) analyze an Ebola epidemic using susceptible-infected-

recoverd class (S-I-R), deterministic and stochastic models. The model includes two 

stages of infectious class, a recovery class and quarantined class, the use Simulation 

method to analyze the stochastic model and found out that an increase in quarantined 

rate will reduce the size of an epidemic. Astacio et al. (1995) considered a susceptible-
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infected-recovered (SIR) type epidemic model, stating that it is possible to simulate two 

Ebola outbreaks: the 1976 outbreak in Yambuku, Zaire and the 1995 outbreak in Kikwit, 

Zaire. The dynamics of these models are determined by the per capita death rate of the 

infected individuals and per capita effective contact rate of an individual contracting the 

disease in the beginning of the epidemic. He made the following assumptions:  

1. At the initial stage, there is a constant number of infected individuals, these 

individuals infect other people who become latent. It takes    days for the latent 

individuals to become infectious. 

2. In order for an individual to become infectious, they must pass through the latent 

stage, thus the data for the latent stage is the same as the data for the infectious stage, 

the only difference is that the latent stage data occurred   days before. Since  is the 

average time it takes for a latent individual to become infectious and the latent stage 

last from 2 to 21 days, chose  = 12. Similarly,  is the average time it takes an infected 

individual to die, and the infectious stage ranges from 4 to 10 days, Thus, the 

information for the daily infection data, and there is a linear relationship, and the slope 

was estimated by doing a linear fit. Using the data gotten for the first 12 day of the line, 

and taking q =  known, the choice for q is arbitrary, and is picked so that the model 

best fit the supplied data. The dynamics of these models are determined by per capita 

death rate of infected individuals and per capita effective contact rate of an individual 

contracting the disease. The basic reproductive number , determines the 

infectiousness of the disease. For Ebola, 1.72 , showing that Ebola is not as 

infectious as previously postulated. The calculated reproductive number (  number 

values ranges from 2.6 to 8.6 for the Yambuku, Zaire outbreak in 1976; and the range 

for the 1995 epidemic in Kikwit, Zaire was slightly lower: 1.57 . this makes 

sense since it means that Ebola virus infected more people during the first epidemic due 

to misdiagnosis and misunderstanding of the virus. 

      Allan et al. (2003) worked on stochastic processes and its application to biology, in 

his work an overview of basic probability and stochastic models common in ecology and 

epidemiology was discussed. 
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      Alstad et al. (2001) worked on basic populous model of ecology, in his work, a guide 

to the use of populous online programs was discussed, including procedures for 

teaching basic population models, demographics, competition, predator prey model and 

epidemic model. Haefner James et al. (1996) gives an overview of many applications of 

different mathematical approaches, including modern computational ones to many 

areas of biology. Hannon et al. (1994) throws light on systems approach to modeling; it 

covers economic, engineering , genetic and ecological models. Hoff John et al. (2002) 

uses collection of case studies to deal with mathematical programming in application to 

forest management, conservation biology and develop this to discrete reaction diffusion 

model. Abdurahman et al. (2015) shows a deterministic model for controlling the spread 

of Ebola virus disease (EVD) in an Ebola invaded country using Nigeria outbreak as a 

case study, a three dimensional non – linear equation is formulated and solved 

numerically using RungeKutta method.  

     Chowell et al. (2004) used a SEIR mathematical model an Ebola epidemic model 

that include a smooth transition in the transmission rate after control interventions are 

put in place. They perform an uncertainty analysis of the basic reproductive number to 

quantify its sensitivity to other disease related parameters. They also analyze the 

sensitivity of the final epidemic size to the time intervention begin and provide a 

distribution for the final epidemic size.  

      The control measures implemented during these two outbreaks (including education 

and contact tracing followed by quarantine) reduce the final epidemic with a factor of 

two relative the final size with a two week delay in their implementation.  

2.3 THE SUSCEPTIBLE-EXPOSED-INFECTIOUS-RECOVERED (SEIR) MODELS 

 
       Chowell et al. (2015) developed and analyze a mathematical model to assess the 

impact of an early diagnosis of pre-symptotic individuals on the transmission dynamics 

of Ebola virus diseases in West Africa, in his work he made an assumption that there is 

a partial Isolation of Infected individuals.  

      Deepa et al. (2015) developed a transmission model for Ebola virus which suggest 

the best combination of control or eradication of Ebola Virus. Racha et al. (2014) 

applied optimal control to study the impact of vaccination on the spread of Ebola Virus, 
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it was solved numerically by using direct multiple shooting method. Chowell et al. (2014) 

uses the effectiveness of interventions during past outbreaks and the ongoing epidemic 

to develop large scale modeling studies to study the spread and control of viral 

hemorrhagic fever, in the context of highly heterogeneous economic reality of African 

countries.  

      Xia et al. (2005) uses sensitivity and uncertainty analysis to reveal that the 

transmission coefficients of suspected and probable cases have stronger correlation on 

the basic reproductive number. Chowell et al. (2005) says that despite improved control 

measures, Ebola remains a serious public health risk in African regions where recurrent 

outbreaks have been observed since the initial epidemic in 1976. Using epidemic 

modeling and data from two well-documented Ebola outbreaks (Congo 1995 and 

Uganda 2000), they estimate the number of secondary cases generated by an index 

case in the absence of control interventions (  ), his estimate of   is 1.83 (SD 0.06) 

for Congo (1995) and 1.34 (SD 0.03) for Uganda (2000). We model the course of the 

outbreaks via an SEIR (susceptible-exposed-infectious-removed) epidemic model that 

includes a smooth transition in the transmission rate after control interventions are put in 

place. They perform an uncertainty analysis of the basic reproductive number to 

quantify its sensitivity to other disease-related parameters. They also analyze the 

sensitivity of the final epidemic size to the time interventions begin and provide a 

distribution for the final epidemic size. The control measures implemented during these 

two outbreaks (including education and contact tracing followed by quarantine) reduce 

the final epidemic size by a factor of 2 relative to the final size with a two-week delay in 

their implementation.  

        Meltzer et al. (2014) calculated a potential underreporting correction factor of 2.5, 

and estimate that 21,000 total cases would have occurred in Liberia and Sierra Leone 

by September 30, 2014. Fred Brauer et al. (2011) said that communicable diseases 

such as measles, influenza, or tuberculosis, are important in modern life. He was 

concerned both with epidemics which are sudden outbreaks of a disease, and endemic 

situations, in which a disease is always present. The AIDS epidemic, the recent SARS 

epidemic, recurring influenza pandemics, and outbursts of diseases such as the Ebola 

virus are events of concern and interest to many people. The prevalence and effects of 

many diseases in less developed countries are probably less well-known but may be of 
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even more importance. Every year millions of people die of measles, respiratory 

infections, diarrhea and other diseases that are easily treated and not considered 

dangerous in the Western world. Diseases such as malaria, typhus, cholera, 

schistosomiasis, and sleeping sickness are endemic in many parts of the world. The 

effects of high disease mortality on mean life span and of disease debilitation and 

mortality on the economy in afflicted countries are considerable. Diseases have been 

important in shaping the course of history.  

      Abdulraman et al. (2015) worked at mathematical model for controlling the spread of 

Ebola virus in Nigeria, it shows a deterministic model for controlling the spread of Ebola 

Virus Disease (EVD) in an Ebola invasion using Nigeria outbreak as a case study, a 

three dimensional non – linear equation is formulated and solved numerically using 

Runge Kutta method. There are many biblical references including the description in the 

book of Exodus of the plagues that Moses brought down upon Egypt. This allows for the 

possibility that the mean incubation period for Ebola virus is different from the mean 

infectious period among those seropositive without a full developed Ebola virus, so that 

the seropositive remain infectious indefinitely, as investigated by Bailey and Estreicher. 

 

                                    

 

 

CHAPTERTHREE 

METHODOLOGY 

 
3.1 DETERMINISTIC DIFFERENTIAL EQUATIONS MODELLING METHOD 
 
Here, we shall look at how to formulate a deterministic differential equation model from 

a flow diagram of Ebola transmission schematic representation to get the differential 

equation of the model. The Jacobian matrix of the model is gotten by differentiating the 

equations of the model with respect to the five classes of the model i.e S(t), E(t), I(t), 
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Q(t) and R(t) respectively and solving for an eigen value will determine if the disease 

free steady state or the endemic state is stable or not. 

 
3.2 STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) MODELLING METHOD 
 
Here, we shall look at how to formulate a stochastic differential equation (SDE) model 

from a random dynamical system consisting of components and m distinct 

independent random changes (where m  ) which may occur to the components of 

the system during a small interval of time. The first approach produces a stochastic 

differential system with Wiener processes. In the second procedure, each change is 

considered separately. The second approach produces a stochastic differential system 

with Wiener processes. In both procedures, the number of equations in the SDE 

model equals the number of components .  

3.2.1 MODELLING USING EULER MARUYAMA’S METHOD 

 
Consider an autonomous stochastic differential equation  
 

 
 

 
 
Euler-Maruyama (E-M) method for solving it is given by 
 

                                                 

In this thesis we apply the Euler-Maruyama method due to the strong accuracy of the 

Euler-Maruyama method. 

According to Kloeden and Platen (1992), a numerical method converges with strong     

order  if there exists a constant  such that  

 



18 
 

For the Euler -Maruyama method the following holds: 

 
 
That is, the E-M method is half order accurate. If a numerical scheme is convergent with 

order , and we make the step size  times smaller, then the approximation error will 

decrease by a factor of . For computational purposes we consider discretized 

Brownian motion (Wiener process).  

We thus divide a time interval   into  subintervals by setting . 

Further, due to the properties of the standard Brownian motion, we can simulate its  

Values at the selected points by 

 
,   

 
where  are independent random variables with distribution on . The  
 
approximate solution is very close to the exact solution as the mesh  of the partition  
 

of the interval   approaches zero, i.e. when  goes to zero.  
 
Therefore, if  is small enough, the above Euler-Maruyama method gives a good  
 
approximation to the solution of  the stochastic differential equation. If the step size is  
 
made greater than the order, the Euler Maruyama method will not converge. If made  
 
equal to the order, it converges. However, if the step size is made smaller than the  
 
order, we obtain a more accurate approximation to the exact solution.   

 

3.2.2 EXISTENCE AND UNIQUENESS SOLUTION OF S.D.E 

Consider the stochastic differential equation below  

0 0( ( )) ( ( )) ( ( )) ( ), ( )d X t G X t dt H X t dW t X t X    

If the following properties hold: 
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 Both ( ( ))G X t   and ( ( ))H X t  are continuous on  0( , ) ,t x t T   

 The coefficient functions ,G H  satisfies the Lipschitz condition 

 

 The coefficient functions ,G H also satisfy the growth condition in the second 

variables 

+ and  

Then the stochastic differential equation has a strong solution on  that is 

continuous with probability 1. 

3.2.3 MODELLING USING ITO’S INTEGRAL 

The Ito’s Integral  is defined to be 

 

Where  and  

Two useful properties derived are: 

(i)  

(ii)  

In addition if , we say that  satisfies the Ito’s SDE: 

 

Where g is called diffusion coefficient and f is the drift coefficient 

 
3.2.4  MULTIDIMENSIONAL ITO FORMULA (ITO, 1951) 
 
Consider the multidimensional stochastic differential equation 
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( , ) ( , ) ( , )dX t f t dt G t dW    fora t b                                                                (3.2) 

 
where: 
 

1 2

1 2

1 2

( , ) [ ( , ), ( , ),..., ( , )] ,

( , ) [ ( , ), ( , ),..., ( , )] ,

( , ) [ ( , ), ( , ),..., ( , )] ,

( ( , )) ( , )

T
n

T
n

T
n

ij ij

X t X t X t X t

f t f t f t f t

W t W t W t W t

G t g t

   

   

   
 









 

 
Where  ( , )G t   is an  matrix. 
 
Let ( , )F t X  be a smooth function of and . Then Ito’s formula can be generalized to  
 
yield the stochastic differential for  of the form 
    

2

1 1 1 1 1 1

1
( , ) ( )

2

n n n m n m

ik jk ij j
i i j k i ji i j i

F F F F
dF t X g g dt g dW t

t X X X X     

    
          

  
                   (3.3)

 

 

3.3 SECOND MODELLING PROCEDURE 

In the second modeling procedure, the random changes in  are approximated 

using independent normal random changes,  

The stochastic model is given by the stochastic differential system 

0

( ) ( , ( )) ( , ( )) ( )

(0)

dS t f t S t dt B t S t dW t

S S

   
 

  

    

 

                                                                      (3.4)

 

 
where the  entry in the matrix  is  

=    for       

And is a vector of  independent Wiener processes. 

The probability distribution  of the solution that solves the above stochastic  
 
differential equation satisfies the forward kolmogorov equation given below: 
 

2
, ,

1 1 1 1

[ ( , ) ( , ) ( , )][ ( , ) ( , )]( , ) 1

2

n n n m
i l j li

i i j li i j

p t x g t x g t xp t x f t xp t x

t x x x   


  

    
                              (3.5)
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3.4 MODEL FORMULATION: 

The total population at time t , denoted by ( )N t , is divided into the mutually exclusive 

compartments of susceptible individuals ( )S t , exposed individuals ( )E t , infectious 

individuals ( )I t , quarantined or isolated individuals ( )Q t and recovered individuals ( )R t , 

so that  

( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t Q t R t      

We formulate our model with the following assumptions: 

i. The isolation is completely effective such that a successful contact with susceptible 

individuals is impossible. 

ii. There can be a recovery for both infectious and quarantined class. 

iii. it is assumed that individuals are recruited either by birth or by migration into the 

susceptible class at rate . 

iv. Susceptible individuals acquire Ebola virus as a result of interaction with only 

infectious individuals at a rate  , where I   
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Figure 1: Schematic representation of the model 

Table 3.1: Description of model variables 

Variable  Description 
( )S t  Susceptible individuals 
( )E t  Exposed individuals 
( )I t  Infectious individuals 
( )Q t  Quarantined or isolated individuals 
( )R t  Recovered individuals 

 

   Table 3.2: Description of model parameters 

Parameter Description 
  Recruitment rate 
  Effective contact rate 
k  Transmission rate for exposed individuals 

1  Removal rate for infectious individuals either by recovery or Ebola induced 
death 

2  Removal rate for isolated individuals either by recovery or Ebola induced 
death 

  Rate at which an infectious individual gets isolated  
  Fraction of latent detectable individuals who are diagnosed and get 

isolated 

1q  Probability that an infectious individual dies due to Ebola 

2q  Probability that an isolated individual dies due to Ebola 

 

The model equations are therefore given by  
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1

2

1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

dS
S S

dt
dE

S k E
dt
dI

kE I
dt
dQ

kE I Q
dt
dR

q I q Q R
dt

 

 

   

   

  

    

   
     

    

     

       (3.6) 

 

3.5 Basic Properties of the model 

Theorem 3.1 

Let the initial data for the model (3.6) be (0) 0, (0) 0, (0) 0, (0) 0, (0) 0S E I Q R     . 

Then, the solutions 

 ( ), ( ), ( ), ( ), ( )S t E t I t Q t R t of the model (3.6) with positive initial data, will remain positive 

for all time 0.t   

Proof 

Let  

 1 sup 0 : ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0t t S t E t I t Q t R t         

It follows from the first equation of the model (3.6) that 

dS
S S

dt
     

which can be re-written as 

0 0

( ) exp[ ( ) ] exp[ ( ) ]
t td

S t t d t d
dt

       
            
      

   

Thus, 

1 1

1 1

0 0 0

( ) exp[ ( ) ] (0) exp[ ( ) ]
t t y

S t t d S y d dy       
             

     
    

This implies 
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1

1

1

1

0

1

0

0 0

( ) (0)exp[ ( ) ]

exp[ ( ) ]

exp ( ) 0

t

t

t y

S t S t d

t d

y d dy

   

   

   

  

     
  

       
  





 

 

Similarly, it can be shown that 0, 0, 0, 0E I Q R    for all time 0t   

Theorem 3.2 

The closed set   5, , , , :S E I Q R R N


 
    

 
 is positively invariant 

Proof 

Adding all the equations of the model gives 

dN dS dE dI dQ dR

dt dt dt dt dt dt
      

1 1 2 2N q I q Q        

In the absence of infection 

0I Q  , so that 

dN
N

dt
   

We now apply Birkhoff and Rota’s Theorem on differential inequality. 

By separation of variables of differential inequality, we obtain 

dN
dt

N


 
 

Integrating both sides gives 

1
ln( )

ln( ) ( )

dN
dt

N

N t c

N t c






 


 

     

     

 

 

Therefore, 

,tN Be    where B  is a constant. 

Now applying 0(0)N N  we have 
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0A N    

Substituting gives 

0( ) tN N e         

Making  the subject of the formula we have 

0 tN
N e 

 
  

   
 

 

As t in  the population size, N  approaches 

0 N N
 
 

     

Therefore, the feasibility solution set of the system of equations enters the region 

5( , , , , ) :S E I Q R R N


 
    

 
 

In this case, whenever ,N



  then 0
dN

dt
  which means that the population reduces 

asymptotically to the carrying capacity. On the other hand, whenever ,N



  every 

solution with initial condition in 5R  remains in that region for 0.t   

Thus, the region   is positively-invariant and the model is well posed and biologically 

meaningful. 

3.6 STOCHASTIC MODEL EQUATIONS  
 
Applying the method developed by Allen et al. (2008), we can get the stochastic model 

for the deterministic model above. 

The drift vector is defined as 

14

1

ii
i

f p 



 

, where ip  and i


are the random changes and transition probabilities 

respectively, defined in Table 3.1 below. 

 

Change Probability Event 
[1 0 0 0 0]T  1p t   Birth of a susceptible  

[ 1 0 0 0 0]T  2p S t   Susceptible dies natural death  

[ 11 0 0 0]T  3p SI t   Susceptible becomes exposed 
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[0 1 0 0 0]T  4p E t   Exposed individual dies natural death 

[0 11 0 0]T  5 (1 )p k t    Exposed individual becomes infectious 

[0 1 0 1 0]T  6p k t   Exposed individual is quarantined 

[0 0 1 0 0]T  7p I t   Infectious individual dies natural death 

[0 0 11 0]T  8p I t   Infectious individual is quarantined 

[0 0 1 0 1]T  9 1 1(1 )p q t    Infectious individual recovers 

[0 0 1 0 0]T  10 1 1p q t   Infectious individual dies due to Ebola 

[0 0 0 1 0]T  11p Q t   Quarantined dies natural death 

[0 0 0 1 0]T  12 2 2(1 )p q t    Quarantined individual recovers  

[0 0 0 11]T  13 2 2p q t   Quarantined individual dies due to Ebola 

[0 0 0 0 1]T  14p R t   Recovered individual dies natural death 

 
 
 
 

14

1

ii
i

f p 



 

 

1 2 3 4 5 6 7

8

1 1 1 0 0 0 0

0 0 1 1 1 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0

0

1

1

0

f p p p p p p p

p

              
                            
                    
             
             
             
             

 
 
 
  
 


 



9 10 11 12 13 14

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 1 0

1 0 0 0 1 1

p p p p p p

           
           
           
                
           

              
                       

 

0 0 0 0

0 0 (1 ) 0

0 0 0 0 ( 1) 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

S SI

SI E k k

f k I

k

I

I

 
   

 





               
                             
                    
             
             
             
             

 


 







1 1 1 1

2 22 2

1 1 2 2

00 00 0 0

00 00 0 0

0( 1) 00 0

0 ( 1)0 0

(1 ) 0 0 0

q q

qqQ

q q R
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Hence, the drift vector  of order , is given by 
 

1

2

1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

S S

S k E

f kE I

kE I Q

q I q Q R

 
 

   
   

  

   
   
     
 

   
     


 

 
whereV  is the covariance matrix, given as: 

14

1

T

i
i

V p 
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1 2 3

4 5 6

7

1 1 1

0 0 1

(1 0 0 0 0) ( 1 0 0 0 0) ( 1 1 0 0 0)0 0 0

0 0 0

0 0 0

0 0 0

1 1 1

(0 1 0 0 0) (0 1 1 0 0) (0 1 0 1 0)0 1 0

0 0 1

0 0 0

V p p p

p p p

p

      
     
     
         
     
     
     
     

     
            
          
     
     
     
     

 8 9

10 11 12

0 0 0

0 0 0

(0 0 1 0 0) (0 0 1 1 0) (0 0 1 0 1)1 1 1

0 1 0

0 0 1

0 0 0

0 0 0

(0 0 1 0 0) (0 0 0 1 0) (0 0 0 1 0)1 0 0

0 1 1

0 0 0

p p

p p p

p

     
     
     
           
     
     
     
     
     
     
     
          
     

      
     
     

 13 14

0 0

0 0

(0 0 0 1 1) (0 0 0 0 1)0 0

1 0

1 1

p
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 (1 ) (

S SI SI

SI SI E

V

SI SI

k

  
  

 



        
              
          
       
       
              




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ( 1) (1 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

k k k

k k I I I

k k I I

  
    

   

       
               
           
       

        
       
       

 1 1 1 1 1 1

1 1 1 1

2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(1 ) 0 ( 1) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ( 1) 0 (1 ) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (1 ) 0

0 0 0 0 0

q q q

Q

q q

q

  


 



     
     
     
       
     
     

          
 
 
 
  
 

 
 
 

2 2 2 2

2 2 2 2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

q q

q q R

 
  

   
   
   
   
   

   
     

 
Hence, the covariance matrix  of order  is given by 
 

1 1
)

0 0

(1 ) ( 1) 0

0 ( 1) ( 1) ( 1) 2(1 ) ( 1)1 1 1 1 1 1 1 1 2 2 1 1
0 02 2
0 0 ( 1) (11 1 2 2 2 2

0S SI SI

SI SI E k k k k

k q k q k I q q q q

k I k I Q q

q q q q R

  
      

         
     

   

   
      

            

    

   

 
 
 
 
 
 

 

 
The stochastic model is therefore given by 
 

1
2( ( )) ( ( )) ( , ( )) ( )d X t f X t dt V t X t dW t 

 
 

 
We have already seen the transition probabilities as shown above. 
 
where the drift vector  of order ,  
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ip  and i


 (  are random changes and transition probabilities represented in 

the above table. 

 

The diffusion matrix is obtained from the entries iip 


.  It is given by  

 
( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ( ) ( 1) 0 0 0 0 0 0 0

0 0 0 0 (1 ) 0 ( ) ( ) [(1 ) ] ( ) 0 0 0 01 1 1 1
0 0 0 0 0 0 0 0 ( ) [(1 ) ] ( ) 02 2 2 2
0 0 0 0 0 0 0 0 [(1 ) ] 0 0 0 ( ) ( )1 1 2 2

S SI

SI k k

k I I q q

k Q q q

q q R

E

I

 
  

    
   

  









  
  

     
  

 

 
 
 
  
 
 
 

Where 1 2 3 4 5 6 7 8 9 10 11 12 13 14[ , , , , , , , , , , , , , ]TW W W W W W W W W W W W W W W


 is a vector of fourteen   

independent Wiener processes. In addition,  has order  
 
14 1  while is a 5 1 dimensional vector.  
 

if  are given below: 

 

1

2

3 1

4 2

5 1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

f S S

f S k E

f kE I

f kE I Q

f q I q Q R

 
 

   
   

  

   

  
    

   

    

 

 
The elements of the diffusion matrix 
 

 

 
,  
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5
2

1

( )i
i

f f x


  and  ,
4 9

2

1 1

( )ij
i j

G g x
 

   

 
where 
 

2 2 2 2 2 2
1 2 3 3 4 5[ ] [ ] [ ] [ ] [ ] [ ]f f f f f f f       

 

1 1 1 2) 22 3(1 ) (1 ) 2(1 )G S SI k q q q R                    

 
Both if  and ijg  are continuously differentiable at  and hence satisfy the  

 
Lipschitz condition (by the Mean value theorem for calculus). Since the norms exist,  
 
they are bounded. The drift and the diffusion matrices are therefore bounded. Hence,  
 
they satisfy the conditions for existence and uniqueness of solution.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Basic reproduction number (  

The basic reproduction number  ) is calculated from the disease compartments i.e  

those classes that have the disease ( . 

The basic reproduction number  ) is calculated as follows: 

: Rate of appearance of new infection  

 : Rate of transfer of disease out of the disease compartment             

 

: Rate of transfer of infection into the disease compartment by other means  

 

 

 : The Jacobian of with respect to disease compartments evaluated at 

D.F.E i.e , ,  

 

 : The Jacobian of with respect to disease compartments evaluated at 

DFE 
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The basic reproductive number 

 

                                                                                 (4.1) 

 

4.2  ENDEMIC STEADY STATE 

Endemic state equilibrium at this state the differential equations of the model is set to 

zero but 0, 0  

                                                                        (4.2) 

                                                                (4.3) 

                                      (4.4) 



34 
 

                                                             (4.5) 

                                              (4.6) 

On putting the derivatives in the left hand side and equating it to zero and solving the 

resulting differential equation with respect to the variables , , ,S E I Q  and R , we obtain 

 

 

                                                                                                     (4.7) 

=  

 

We obtain the endemic steady state at  

Evaluating J at  

=  

Compute the eigen values, we solve 

    =0  
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 The endemic state is locally asymptotically stable  

Numerical Simulation 
 
Parameter values Unit Reference 
  70  1day  Chowel, et al.(2015) 

  0.91  1day  Ebenezer, et al.(2016) 

k  0.2  1day  Chowel, et al.(2015) 

1  0.17  1day  Ebenezer, et al.(2016) 

2  0.2  1day  Chowel, et al.(2015) 

  0.08  1day  Ebenezer, et al.(2016) 

  0.6  1day  Chowel, et al.(2015) 

1q  0.7  1day  Chowel, et al.(2015) 

2q  0.63  1day  Chowel, et al.(2015) 
  0.000498  1day  Ebenezer, et al.(2016) 

 The initial populations were assumed to be ( ( ), ( ), ( ), ( ), ( )) (20,25,15,25,15)S t E t I t Q t R t   
Deterministic model analysis 
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Fig. 4.1: Graph of Infected against time 
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Fig. 4.2: Graph of Quarantined against time 
 
 
From Fig. 4.1, the population of infectious individuals is shown over a period of time. It 

is seen that the disease will produce an epidemic and after some time, the infected 

class maintains a uniform increment. The quarantined population is also shown to 

behave in a similar manner over a period of time.   

 
 
Stochastic model Analysis 
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Fig. 4.3: Graph of Infected against time  
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Fig.4.4: Graph of Quarantined against time 
 
The populations of infectious and quarantined individuals over a period of time are 

shown in figures 4.3 and 4.4. here, the two  populations have below 50 individuals for a 

long period of time, but after 40 years. The result seem a contrast to what is obtainable 

in the deterministic model when the infected and quarantined populations increase 

rapidly at the onset of the disease. The deterministic gives a better description of the 

model. It considered environmental fluctuations which were not captured by the 

deterministic model.       
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 
 

5.1 CONCLUSION 

 

In this work, Carlos Castillo-Chavez work on modeling the case of early detection 

of Ebola virus is reviewed and extended to Stochastic model. A deterministic and 

Stochastic differential equation model is developed and investigated for the 

transmission dynamics of Ebola virus. The model, which is a multidimensional diffusion 

process, includes susceptible, exposed, infected and quarantined classes. This model is 

developed with an assumption that there can be a recovery for the infected population 

and after recovery the recovered individual do not stood the chance of been re-infected. 

We were able to see that the disease free steady state of our model is globally 

asymptotically stable. We also observed that there should be a bound at which 

Susceptible become infected. The endemic steady state showed that the disease will 

persist in the population if there is no bound on the interactions between the susceptible 

and infected population. It is also important to place the infected population in a 

quarantine, since removing the infected population will stop the susceptible from been 

infected. 

Not only should mass vaccination exercise be encouraged to cover the majority 

of the population whenever there is an outbreak of the disease but also, measles 

prevention must be a public health priority. As a mathematical epidemiologist, I can tell 

you there is some good news in the Ebola epidemic ravaging West Africa. This Ebola is 

not spreading nearly as fast as some scourges of the past. Ebola was an interesting 

case study for our mathematical modeling of the spread of disease, as there were two 

relatively large and well-documented outbreaks in which the impact of efforts to control 

the virus was evident (the 1995 outbreak in Congo  formerly known as Zaire and the 

2000 outbreak in Uganda). It was intriguing not to mention scary  to work on a disease 

that produced such horrific symptoms with a fatality rate above 50 percent. But I learned 

then that Ebola isn’t the fastest-spreading disease in human history. The good news is 

that Ebola has a lower reproductive rate than measles in the pre-vaccination days or the 

Spanish flu. Our 2004 work, which produced the first estimates for Ebola’s reproductive 

rate by using mathematical modeling and epidemiological data from the Central African 
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outbreaks, found that each case of Ebola produced 1.3 to 1.8 secondary cases on 

average. This ongoing outbreak, a colleague and I recently found, has a reproductive 

rate that is about the same as the last one. It hasn’t become more transmissible in the 

more than 10 years it was lying low and humankind has experience in dealing with it. 

And the time that elapses between the first Ebola case and the generation of secondary 

cases is about two weeks. This should allow plenty of time to identify those who are sick 

and protect people who might come in contact with them. People with Ebola are 

contagious and able to transmit the virus only when they are showing symptoms, which 

occurs about a week after they are exposed to the virus. To break the chain of the 

current Ebola epidemic, our numbers show that health-care workers need to stop about 

50 percent of infectious contacts by effectively isolating people who are infectious. 

(Vaccinating at least some of the population would be another option, but no licensed 

vaccine is available.) The trouble is that the countries suffering from outbreaks have 

weak health-care systems – perhaps too weak to halve the number of infectious 

contacts. These countries lack gloves, gowns, face masks and other essential supplies 

to protect nurses and doctors from infection, and they don’t have an adequate 

surveillance system to catch and identify Ebola cases in a timely way. The number of 

doctors and health centers is small as well. 

 

5.2  RECOMMENDATIONS 

 

Further research may include stochastic model of a bistable systems and 

applying other stochastic models like Continuous Time Markov Chain as well as 

Discrete Time Markov Chain Models to verify the accuracy of the SDE model, extension 

of the present model to an age structured model. In future work also, we may consult, 

among others, Zach Yarus et al. (2012), Chowell et al. (2003) for more useful 

applications of Ebola modeling to help the Ebola affected country. Stochastic 

differentials do not obey the ordinary differential equation, an additional term appear, so 

I suggest that further research be made on discrete solution to stochastic differential 

equation using Monte Carlo simulation. Also, we may further look at the effect of media 

coverage on the model and how it can help reduce the spread of the Ebola disease. 

Matthews and Woolhouse (2005) also suggested that the transmission model could 
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compose of biological information, epidemiology information, real time data, and 

demographic information to precisely describe the model. Consequently, a combination 

of theoretical and empirical research is needed to increase our understanding of the 

impact of human contact networks on the spread and evolution of infectious agents, and 

to assess the implications for the planning of public health policy.   

 

5.3 CONTRIBUTION TO KNOWLEDGE 

 In this study we have been able to extend the work of Chowell et al. (2015). We 

are able to develop and analyse a Model with an effective isolation of infected 

individual and its effect to the basic reproductive number is analysed in our 

Simulation. 

 We have been able to show from our model, that the higher the fraction of latent 

detectable individuals who are diagnosed and isolated will reduce the basic 

reproductive number thereby reducing the spread of Ebola. 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

REFERENCES 

 
Abdulrahman Ndanussa (2015): a mathematical model for controlling the spread of                    
   Ebola virus in Nigeria, International journal of Humanities and Management Sciences                 
   (IJHMS) Volume 3, issue 3 (2015) ISSN 2320-4044 
 
Allan  Linda J. S. (2003) An Introduction to stochastic Processes with application to                  
   Biology.Pearson Prentice Hall, Upper Saddle River, NJ. ISBN 0-13-035218-7 
 
Alstad  Don (2001) Basic Populus Model of Ecology. Prentice Hall, Inc. Upper Saddle     
   River, NJ. ISBN: 0-13-021289-x 
 
Amira Racha, Delfim F. M. Torres. Mathematical Modeling, Simulation and optimal       
   control of the 2014 Ebola outbreak in West Africa. Discrete Dynamics in Nature and  
   Society Vol. 2015, Article ID: 842792, 9 pages. 
 
Arreola R, Damon D, Mirian B and Anike I.(1999).  The Ebola virus: Factors affecting  
   the dynamics of the disease. Journal of Mathematical and Theoretical Biology.2005 –    
   BU-1519-M.  
 
Bossel  Hartmut (1994) Modeling and Simulation. Wellesley, MA: A. K. Peters, 484 p 
 
Chowell G, Castillo – Chalvez C, Krishnas, Qiux, and Anderson K.S. Modelling the  
   effect of early detection of ebola. The Lancet infectious disease. 2005. 15(2),148-149 
 
CDC Outbreak chronology: Ebol hemorrhagic fever. Atlanta, GA:CDC;2014. Available at  
   http://www.cdc.goc/vhf/ebola/resources/outbreak-table.html 
 
Chowel D-Puente (2005), “A  Mathematical models of emergent and re- emergent     
   infectious diseases: Assessing the effect of public health interventions on disease     
   spread: A dissertation presented to the faculty of Graduate school of Cornell  
   University in partial fulfillment of the requirements for the degree of Doctor of   
   Philosophy. 
 
Chowell G, Hengartner N. W, Castillo –Chavez, Fenimore P. W, Hyman J. M.(2004).     
   The basic reproductive number of ebola and the effect of public health measure: the    
   cases of Congo and Uganda. Journal of Theoretical Biology; 135:19-26 
 
Deepa O. S., SravanthiNallamalli, GopiVentekaSaiTeja (2015). Mathematical model for    
   transmission of Ebola virus.Procedia computer science, vol. 48:741-745 
 
Derrick, N.R. and Grossman, S.L.(1976): Differential equations with applications,   
   Addison Wesley Publishing Company, Phillipines, Inc.  
 
 
 
 



42 
 

 
Diego Chowell, MuntaserSafan, and CarlosCastillo – Chavez (2015) Modeling the case          
   of  Early detection of Ebola Virus. Mathematical Models in population Biology and  
   Epidemiology, Springer (2015) 
 
Earn D. J. D, Rohani P., Bolker B. M and Grenfell B. T. (2000), “A Simple Model for 
   Eichner M, DowellSF, Firese N (2011). Incubation period of Ebola hemorrhagic virus     
   subtype Zaire(2011);2:3-7. 
 
Complex Dynamical Transitions in Epidemics”, Journal of Original Scientific       
    Research,Vol. 287, no. 5453: 667-670 
 
Edward J. Allen, Linda J. S. Allen, Armando Arciniega and Priscilla E. Creenwood     
   (2008). Construction of Equivalent Stochastic Differential Equation Models: Stochastic     
   Analysis and Applicatios, 26: 274-297,Taylors and Francis.  ISBN: 0736-2994 
 

 
Feldman, R.M. and Valdez-Forez, C.(2010). Applied Probability and Stochastic         
   Processes, 2nded.  Springer-Verlag, Berlin Heidelberg 
 
Finkenstadt B, Grenfell B (2000): “Time series modelling of childhood diseases:     
   dynamical systems approach”. Applied Statistics 49:187-205. 
 
Gerardo Chowell, and Hiroshi Nishiura (2014). Transmission Dynamics and control of  
   Ebola virus Disease (EVD): A review. Bio Med Central 2014, 12:196. DOI:    
   10.1186/512916-014-0196-0 
 
Grais, R. F., Conlan A. J. K., Ferrari M. J., Djibo A., Menach A. L., Bjornstad O. N. and 

      B.T Grenfell B. T. (2006). “Time is of the essence: exploring a measles outbreak  
      response vaccination in Niamey, Niger.” (rebecca.grais@epicentre.msf.org).  

 
Grenfell, B. T. (1992). “Journal of the Royal Statistical Society.” Series B    
   (Methodological), University of Cambridge, UK. 
 
Haefner, James W. (1996) Modeling Biological Systems: Principles and   
   Applications.Chapman and Hall. New York. 
 
Hoff John and MichealBevers (2002) Spatial Optimization in Ecological Applications.  
   New York: Columbia University Press. 257 p. 
 
Hannon B. and Roth M. (1994) Dynamic Modeling. New York: Springer, 248 p. 
 
Higham N.J. (1986). “Newton’s method for the matrix square root” Mathematics of   
   Computation. Vol 46: 537-549 
 
Horn, R.A. and Johnson, C.R. (1990). “Matrix Analysis” Cambridge University Press,    
   First Ed. 
 



43 
 

Ito K. (1951): On Stochastic differential equations, Mem. Amer. Math. Soc. Vol. 4:1-51 
 
World Health Organization. Unprecedented number of medical staff infected with Ebola.      
   Geneva,Switzerland: WHO(2014).  
   Available at http://www.who.int/mediacentre/news/ebola/25-august-2014/en 
 
World Health Organization. No Early end to the Ebola outbreak 
   Geneva,Switzerland: WHO(2014).  
   Available at http://www.who.int/csr/disease/ebola/overview-20140814/en/en 
 
World Health Organization. Ebola virus disease outbreak-West Africa 
   Geneva, Switzerland: WHO(2014).  
   Available at http://www.who.int/csr/don/2014_09_04_ebola/en/en 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



44 
 

 

Appendix 
Deterministic Code: 
clearall 
global alpha Lambda beta k gamma_1 gamma_2 delta q_1 q_2 mu 
alpha=0.2;  
Lambda=40;  
beta=0.91;  
k=0.2;  
%gamma_1=0.17;  
gamma_2=0.2;  
delta=0.6;  
q_1=0.7;  
q_2=0.63;  
mu=0.0000498; 
for gamma_1=0.1:0.1:0.9; 
tspan =[0,50]; 
yzero = [50;40;10;75;20]; 
 [t,y]=ode45(@ebolatk,tspan,yzero); 
plot(t,y(:,3),'r') 
xlabel('time(years)'),ylabel('I') 
holdon 
end 
 
 
Stochastic Code: 
% A program for Ebola Model  
% The Euler-Maruyama method is used for solving the SDEs 
% y1 y2 y3 y4 and y5 are the different populations 
% y10 y20 y30 y40 and y50 are the initial populations 
% Problem-dependent statements are marked with a %***  
% icase=1 corresponds to the deterministic problem  
% nt is the number of steps 
% h is the step size 
% Accuracy generally increases as h decreases 
clf 
clear 
foricase=2 
cleartt 
clearyp1 
clearyp2 
clearyp3 
clearyp4 
clearyp5 
nsamp=100; %*** 
tmax=50; %*** 
nt=500; %*** 
y10=20; %*** 
y20=25; %*** 
y30=15; %*** 
y40=25; %*** 
y50=15; %*** 
if(icase==1) nsamp=1; end 
h=tmax/nt; 
hs=sqrt(h); 
randn('state',20); %initiates the random number generator 
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te1=zeros(nsamp,1); 
te2=zeros(nsamp,1); 
te3=zeros(nsamp,1); 
te4=zeros(nsamp,1); 
te5=zeros(nsamp,1); 
te6=zeros(nsamp,1); 
jj1=0; 
jj2=0; 
jj3=0; 
jj4=0; 
jj5=0; 
jj6=0; 
forjj=1:nsamp 
y1=y10; 
y2=y20; 
y3=y30; 
y4=y40; 
y5=y50; 
yp1(1)=y1; 
yp2(1)=y2; 
yp3(1)=y3; 
yp4(1)=y4; 
yp5(1)=y5; 
r=randn(nt+1,14); 
nchk1=0; 
nchk2=0; 
nchk3=0; 
nchk4=0; 
nchk5=0; 
n=0; 
t=0; 
chk=0; 
tt(1)=0; 
while (chk==0) 
n=n+1; 
t=t+h; 
if(jj==nsamp) tt(n+1)=t; end 
Lambda=0.070; 
mu=0.0048; 
alpha=0.03; 
beta=0.01; 
delta=0.2; 
q_1=0.7; 
q_2=0.63; 
gamma_1=0.17; 
gamma_2=0.2; 
lambda_1=0.71; 
lambda_2=0.82; 
k=0.5; 
f1=Lambda-beta*y3*y1-mu*y1; 
f2=beta*y3*y1-(k+mu)*y2; 
f3=(1-delta)*k*y2-(alpha+gamma_1+mu)*y3; 
f4=delta*k*y2+alpha*y3-(gamma_2+mu)*y4; 
f5=(1-q_1)*gamma_1*y3+(1-q_2)*gamma_2*y4-mu*y5; 
g1=sqrt(delta)*r(n,1)-sqrt(mu*y1)*r(n,2)-sqrt(beta*y1*y3)*r(n,1); 
g2=sqrt(beta*y1*y3)*r(n,4)-sqrt(mu*y2)*r(n,5)-sqrt((1-delta)*k)*r(n,6)-
sqrt(delta*k)*r(n,7); 
g3=sqrt((1-delta)*k)*r(n,5)-sqrt(mu*y3)*r(n,7)-sqrt(alpha*y3)*r(n,8)-sqrt((1-
q_1)*gamma_1)*r(n,9); 
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g4=sqrt(delta*k)*r(n,6)+sqrt(alpha*y3)*r(n,8)-sqrt(mu*y4)*r(n,11)-sqrt((1-
q_2)*lambda_2)*r(n,12)-sqrt(q_2*gamma_2)*r(n,13); 
g5=sqrt((1-q_1)*gamma_1)*r(n,9)+sqrt(2-q_2*gamma_2)*r(n,13)-
sqrt(mu*y5)*r(n,14); 
if(icase==1) g1=0; end 
if(icase==1) g2=0; end 
if(icase==1) g3=0; end 
if(icase==1) g4=0; end 
if(icase==1) g5=0; end 
y1=y1+h*f1+hs*g1; 
y2=y2+h*f2+hs*g2; 
y3=y3+h*f3+hs*g3; 
y4=y4+h*f4+hs*g4; 
y5=y5+h*f5+hs*g5; 
if(jj==nsamp) yp1(n+1)=y1; end 
if(jj==nsamp) yp2(n+1)=y2; end 
if(jj==nsamp) yp3(n+1)=y3; end 
if(jj==nsamp) yp4(n+1)=y4; end 
if(jj==nsamp) yp5(n+1)=y5; end 
% This is Euler's approximation to the SDE 
if (y1 < 1) 
chk=1; 
jj1=jj1+1; 
te1(jj1)=t; 
end 
if (y2 < 1) 
chk=1; 
jj2=jj2+1; 
te2(jj2)=t; 
end 
if (y3 < 1) 
chk=1; 
jj3=jj3+1; 
te3(jj3)=t; 
end 
if (y4 < 1) 
chk=1; 
jj4=jj4+1; 
te4(jj4)=t; 
end 
if (y5 < 1) 
chk=1; 
jj5=jj5+1; 
te5(jj5)=t; 
end 
if (t >tmax) 
chk=1; 
jj6=jj6+1; 
te6(jj6)=t; 
chk=1; 
end 
end% end of while (chk==0) loop 
end% end of for jj=1:nsamp loop 
tp=0; tp1=0; tp2=0; tp3=0; tp4=0; tp5=0; tp6=0; 
if(jj1 ~= 0) tp1=sum(te1)/jj1; end 
if(jj2 ~= 0) tp2=sum(te2)/jj2; end 
if(jj3 ~=0)  tp3=sum(te3)/jj3;end 
if(jj4 ~= 0) tp4=sum(te4)/jj4; end 
if(jj5 ~= 0) tp5=sum(te5)/jj5; end 
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if(jj6 ~= 0) tp6=sum(te6)/jj6; end 
if(jj1+jj2+jj3+jj4+jj5~=0)tp=(sum(te1)+sum(te2)+sum(te3)+sum(te4)+sum(te4))/(
jj1+jj2+jj3+jj4+jj5); end 
p1=jj1/nsamp; 
p2=jj2/nsamp; 
p3=jj3/nsamp; 
p4=jj4/nsamp; 
p5=jj5/nsamp; 
p6=jj6/nsamp; 
disp(' ') 
if(icase==1) disp(' Deterministic Calculational Results'); end 
if(icase==2) disp(' Stochastic Calculation Results'); end 
disp(' icasensamp h tmax') 
disp((sprintf(' %12.0f %12.0f %12.5f %12.2f',icase,nsamp,h,tmax))); 
disp(' tp1 p1') 
disp((sprintf(' %12.6f %12.6f', tp1, p1))); 
disp(' tp2 p2') 
disp((sprintf(' %12.6f %12.6f', tp2, p2))); 
disp(' tp3 p3') 
disp((sprintf(' %12.6f %12.6f', tp3, p3))); 
disp(' tp4 p4') 
disp((sprintf(' %12.6f %12.6f', tp4, p4))); 
disp(' tp5 p5') 
disp((sprintf(' %12.6f %12.6f', tp5, p5))); 
disp(' tp6 p6') 
disp((sprintf(' %12.6f %12.6f', tp6, p6))); 
disp(' tp p1+p2+p3+p4+p5') 
disp((sprintf(' %12.6f %12.6f', tp, p1+p2+p3+p4+p5))); 
if(icase==1) title('Deterministic'); end 
if(icase==2) title('Stochastic'); end 
set(gca,'fontsize',18,'linewidth',1.5); 
plot(tt,yp1,'r-')%,tt,yp2,'k-', tt,yp4,'r-',tt,yp3,'y-',tt,yp5,'g-') 
xlabel('Time t') 
ylabel(' POPULATIONS') 
legend('Infected'),% 'Exposed','Infected','Quarantined','Recovered') 
if(icase==2) title('Stochastic'); end 
holdon 
end% end of for icase=1:2 loop 
holdoff 
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