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  ABSTRACT 

In this work, necessary and sufficient conditions are investigated and proved for the 

controllability of nonlinear functional neutral differential equations. The existence, form, and 

uniqueness of the optimal control of the linear systems are also derived. Global uniform 

asymptotic stability for nonlinear infinite neutral differential systems are investigated and 

proved and ultimately, the Shaefers’ fixed point theorem is used to forge a new and far-

reaching result for the existence of mild solutions of nonlinear neutral differential equations 

in Banach Spaces. 
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CHAPTER 1 

GENERAL INTRODUCTION 

    1.1     Background 

Controllability is one of the fundamental concepts in mathematical control theory. It is a 

qualitative property of dynamical control systems and is of particular importance to the 

control theorist. In the recent past, the theory of control of deterministic processes with 

several degrees of freedom appeared to have reached a satisfying stage of completeness. As 

interpreted by the theory of nonlinear ordinary differential equations, Iyai (2006) the 

fundamental problems of control theory have been mathematically posed and answered and 

hence the theory has reached a certain degree of stability and perfection. The authors as a 

result believed that a thorough and careful presentation of the current status of control theory 

would serve the useful purpose of offering a foundation on which later researches would be 

based. It is in this intent, that this work: “Controllability Results for Nonlinear Neutral 

Functional Differential Systems” is carried out. Our Objective therefore is to present an 

organized treatment of control theory that could be complete within the limitations set by the 

restrictions of deterministic problems identifiable in terms of functional differential 

equations. It is enough to mention here that two kinds of functional differential equations 

exist. 

(a) The Retarded Functional Differential Equation given as 

ሶݔ                                               = ,ݐ)݂ ;   (௧ݔ (଴ݐ)ݔ    = ߶ = ௧బݔ
                            (1. 1.1) 

  where ф is the initial function defined in the delay interval [-h,0], h > 0. 

(b)    The Neutral Functional Differential Equation given as: 

                                        
ௗ

ௗ௧
,ݐ)ܦ]  [(௧ݔ = ,ݐ)݂ ;  (௧ݔ (଴ݐ)ݔ    = ߶ = ௧బݔ

                      (1.1. 2)             

where D is a bounded linear operator              

       It is easily observed that, both equations (1.1.1) and (1.1.2) are characterized by 

delays. The motivation for this study stems from the fact that most realistic systems 

should encompass not only the present, but also the past state of the system. This is 

encountered in many areas of human activities. For a good grasp of the present, (t), some 

knowledge of the past, (t-h),  t ≥ 0, h > 0 , is very important. 
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 In general, differential equations which include the present as well as the past state of 

any physical system is called a Delay Differential Equation (or Functional Differential 

Equations).   

The Retarded Functional Differential Equations (RFDE) are characterized by delays in 

the state of the system.    An example is the system 

                                     
ௗ

ௗ௧
(ݐ)ݔ = ݐ)ݔ − ℎ)  ,   ℎ > 0                                                   (1.1.3)              

,ℎܽ݊݀ ݎℎ݁ݐ݋ ℎ݁ݐ ܱ݊  are those (ܧܦܨܰ) ݏ݊݋݅ݐܽݑݍܧ ݈ܽ݅ݐ݊݁ݎ݂݂݁݅ܦ ݈ܽ݊݋݅ݐܿ݊ݑܨ ݈ܽݎݐݑ݁ܰ

that have delays in the state as well as   in the derivatives. An example is the system 

                                 
ௗ

ௗ௧
(ݐ)ݔൣ  − ܿ൫ݐ)ݔ − ℎ)൯൧   =    ܾݐ)ݔ − ℎ)                                    (1.1.4) 

,ܿ ݁ݎℎ݁ݓ ܾ , ܽ݊݀ ℎ ( ℎ >        .ݏݐ݊ܽݐݏ݊݋ܿ ݁ݎܽ(0

  Systematic study of controllability started over the years at the beginning of the sixties 

when the theory of controllability based on the description in the form of state space for 

both time –varying and time invariant linear control systems was carried out. Roughly 

speaking, controllability generally means that, it is possible to steer a dynamical control 

system from an initial state to a final state using the set of admissible controls. Optimal 

control means doing the same in the best conceivable way. There are many different 

definitions of controllability which strongly depend on the class of dynamical control 

systems. In recent years, various controllability problems for different types of nonlinear 

systems have been considered. However, it should be stressed that, most of the reported 

work in this direction has been mainly concerned with controllability for linear 

dimensional systems with constrained control and without delays (see Klamka (1991), 

Sun (1996), Underwood and Young (1979)). Later on delay differential equations came 

to limelight (see Nse (2007), Nse (2007)). A delayed equation on a linear system is one 

which affects the evolution of the system in an indirect manner. 

If we consider the equation 

ሶݔ                                           (1.1.5)                                                            (ݐ)ݑܤ + (ݐ)ݔܣ  =  

where A and B are nxn and mxn matrices, we see that the action of the control is direct in 

that the local behavior of the trajectory is affected only by the local behavior of the 

control u(t) at time t. It is known that, most natural applications give rise to mechanism of 

indirect actions where decisions in the control function are shifted, twisted or combined 

before affecting the evolution thus  comprising the delay u(t-h) represented by the system 
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ሶݔ                                             ݐ)ݑܤ + (ݐ)ݔܣ  =   − ℎ)                                                 (1.1.6) 

It is well known that the future state of realistic models in the Natural Science, Economics 

and Engineering depends not only on the present, but also on the past state and at times , even 

on the derivative of the  past state. There are simple examples from Biology (predator-

prey, Lodka Volterra, Spread of Epidemics), from Economics (dynamics of capital growth of 

global economies) and from Engineering (mechanical and aero – space , aircraft stability, 

automatic steering using minimum fuel and effort, control of high speed, closed air circuit, 

wind tunnel computer and electric engineering , fluctuations of current in linear and nonlinear 

circuits, flip-flop circuits and lossless transmission lines).These examples are used to study 

the stability and time optimal control of  Functional Differential Systems. The results of this 

research effort are, therefore, intended to forge far-reaching solutions to these daily human 

endeavors. 

1.2. Statement of the Problem / Objective. 

      Our principal objective in this work is to obtain Necessary and Sufficient 

Conditions for controllability, optimal control and stability for Neutral Functional 

Differential Systems. It is known from Onwuatu (1993) that, if a system is relatively 

controllable, then optimal control is unique and bang-bang. In the light of this, we shall 

consider the Neutral Volterra Integrodifferential Equation of the form 

ௗ

ௗ௧
ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − (ݐ)݃

௧
଴ ቃ   

                         =  A(t)x(t)   + ׬     ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛
௧

଴            (1.1.7) 

 with initial condition ݔ(ݐ଴) = ,଴ݔ where xєܧ௡is the state space and u єܧ௠ is the        

control function, H(t ,θ) is an nxm matrix continuous at t and of bounded variation in θ on 

[-h,0]; h>0 for each tє[t0,t1] ; t1 > t0 . ܶℎ݁ ݊(ݐ)ܣ ݏ݁ܿݎݐܽ݉ ݊ݔ, ,ݐ)ܥ ,(ݏ ,ݐ)ܩ  are (ݏ

continuous in their arguments. The n-vector function g is absolutely continuous. 

      The above system will be investigated for existence and uniqueness of optimal control 

by first of all considering the relative controllability of the system. 

      We shall then forge ahead to achieve solution near the origin to another Neutral 

Functional Differential Equation of the form 

           
ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ  ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ݐ)ݔ(ݐ)ܣ + ߠ݀(ߠ

଴
ିஶ                         (1.1.8). 

 , ݁ݎℎ݁ݓ

,ݐ)ܮ            (௧ݔ = ∑ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ߠ݀(ߠ

଴
ି ஶ                                       (1.1.9) 
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is a bounded linear operator, and f( ݐ ,  ௧)is a perturbation function.  The nxn matrixݔ

functions Ak and A(t ,θ) are measurable  in (t, s) є ExE,  θ є [-∞,0). 

The energy method of Alexander Mikhailovick Lyapunov (1829) which stipulates that, in a 

stable system, the total energy in the system will be a minimum at the equilibrium point will 

be used to establish results. This no doubt will pave the way for discussions on stability of 

various nonlinear functional equations. 

  The statements of the problem are thus formulated: 

Suppose we are given a Neutral Functional Differential Equation as in equations (1.1.7) and it 

is required to move the solution (࢚)࢞ from an initial point  ࢞૙   at time  ࢚૙  to a terminal point 

 ૚.The problem arises as to whether it is possible to carry out this task in finite࢚  ૚  at time࢞

time. As an illustration, we shall consider the system 

ሶݔ                                                         (1.2.0)                                                              (ݐ)ݔܽ− =   

Clearly, the solution of the above system is 

 .A݁ି௔௧                                                           (1.2.1) = (ݐ)ݔ                                                          

If we desire to drive this solution to the origin .that is, null controllability, we observe that, it 

cannot be achieved in finite time because (ݐ)ݔ  tends to zero only when t tends to infinity. 

Since this cannot be achieved in finite time, we need to modify the system to be able to bring 

 to 0 in finite time. The process of modification is called controllability which will  (࢚)࢞

answer the controllability problem. 

       The optimal control problem is formulated as follows: Having guaranteed controllability 

of the system in question is there an admissible control u* such that the solution  ࢚)࢞, ф,  (∗࢛

of the system hits a continuously moving target point in minimum time t*. Here u* is the 

optimal control and t* the minimum time. Once it is guaranteed that such a control exists, 

we shall show it is unique and bang-bang. 

       Finally, we shall ask the question:  Is the solution near the origin of system (1.1.8) going 

to remain quite close for all future times?  This is the stability problem which we are desirous 

to answer in the affirmative. 

1.3.     Scope of Study. 

                Differential systems are generally important tools for harnessing different 

components into a single system and analyzing the inter-relationships that exists between 

them which otherwise might continue to remain independent of each other. Physical systems 

which express the present state of solutions are the most common system encountered in the 
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theory of differential equations. The Scope of this work, therefore, is to go beyond these 

systems and address more realistic systems involving not only the present but also the past 

states of the system. This is because the latter permeates various aspects of life and has of late 

triggered interest in research. 

   Neutral differential equations arise in many areas of applied Mathematics and such 

equations have received much attention in recent years. For example, the mixed initial 

boundary hyperbolic partial differential equations which arise in the study of lossless 

transmission lines can be replaced by an associated neutral differential equation. This 

equivalence has been the basis of a number of investigations of the stability properties of 

distributed networks, (see Iyai (2006), Kwun (1991)). 

      It is in this light also that we intend to broaden the scope to involve systems of the Neutral 

type. This is because in recent years, it has emerged as independent branch of modern 

research due to its connection to many fields such as continuum mechanics, population 

dynamics, system theory, biology epidemics and chemical oscillations (see Balachandran, 

Balasubramaniam and Dauer (1996), Burton (1983), Corduneanu (1985)). 

1.4.   Definitions and Preliminaries 

      In Mathematical parlance, we consider a system of the form 

ሶ ݔ                                                       = ,ݔ)݂ ,ݐ  (1.2.2)                                                            (ݑ

                                              where x є  ܧ௡and  u є ܧ௠.  

 This differs from the known familiar one-the usual first order ordinary differential equation 

(ODE) because of the presence of the time function u(t) in the right-hand side of (1.2.2). 

Many physical processes described by differential equations may have the time-dependence 

of the process influenced in some manner. This influence is generally referred to as steering 

or controlling of the process and in (1.2.2) the time function u denotes steering mechanism. 

Hence, u is often called the steering or control function. Thus, in Control Theory, the two 

dependent variables x and u are called the state variable and the control variable respectively. 

      In case of air spaceship, the state variable x may refer to the position and velocity of the 

spaceship, while the control function ݑ = ,ଵݑ ) ,ଶݑ … ,  ௠) may represent the controllableݑ

individual thrusts of the engines. 

   Suppose now we desire to steer a process (system) from a state  ݔଵ to  a state ݔଶ, two  

very important questions arise: 

   (i).       Does a steering mechanism, a control function u that can be used to steer the process        

             (system) from  ݔଵ to  ݔଶ in a finite time exist? This is the question of Controllability. 
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   (ii)  Suppose the answer to question (i) above is affirmative, among all the possible steering 

functions that can be used to steer the process (system) from ݔଵ to ݔଶ  , is there a best one, an 

optimal one? May be from the point of view of minimizing the travel time, fuel consumption, 

cost, side effects, or maximizing profit etc?   This is the question of Optimal Controllability. 

A solution of the system (1.2.2) depends on the function u(.) - the notation u (.) is used to 

denote a function defined on the interval [to ,t] . To reflect this dependence, we write a 

solution to system (1.2.2) as   ߰(ݔ଴, ,଴ݐ .)ݑ ),  (ଵݐ

The Controllability question (i) may be put in mathematical parlance thus: 

Given  ݔଵ, ݐଵ and  ݔଶ, does there exist a time ݐଶ > ݐଵ  and   a function u (.)  such that 

,ଵݔ)߰                                                ,ଵݐ .)ݑ ), (ଶݐ =    .ଶݔ  

If the answer to question (i) is affirmative, the system is said to be controllable, while 

the system is said to be optimally controllable if the answer to question (ii) is affirmative. 

     Let us consider the special case in which the right-hand side of system (1.2.2) is linear 

with constant coefficients. In such a case, we have  

ሶݔ                                                       = ݔ(ݐ)ܣ +  .(1.2.3)                                             (ݐ)ݑܤ

where A is an nxn-matrix and B is an nxm-matrix. For such linear systems, the concept of 

complete or null-controllability makes sense. 

Definition 1.4.1: (controllability) 

                  The linear system (1.2.3) is said to be controllable if and only if for any initial 

state ݔଵ  ܽݐ ݁݉݅ݐ ݐଵ there exists steering function u (.) which steers the system from 

 .ଶ in finite timeݐ ݁݉݅ݐ  ݐܽ ଶݔ   ଵ  toݐ ݐܽ ଵݔ

That is for any ݅݊݅ݔ  ݁ݐܽݐݏ ݈ܽ݅ݐଵ  ,݅݊݅ݐ ݁݉݅ݐ ݈ܽ݅ݐଵ  given, there exists  ݐ ݁݉݅ݐଶ  and u (.) such 

that     ߰( ݔଵ  ,ݐଵ ,u (.) ,   ଶݔ = (ଶݐ

Definition 1.4.2: (null-controllability) 

The linear system (1.2.3) is null-controllable if and only if for any initial state ݔଵ  ܽݐ ݐଵ    there 

exists steering function u (.) which steers the system from ݔଵ ܽݐ ݁݉݅ݐ ݐଵ  to   ݔଶ =   ଶݐ  ݐܽ  0

in finite time. 

That is for any ݔଵ  ,ݐଵ  given, there exists  ݐଶ  and u(.) such that     ߰( ݔଵ  ,ݐଵ  , u (.) ,  .ଶ) = 0ݐ

We state, without proof, the following very important result that provides criteria for 

determining the null-controllability for the system (1.2.3). 

Definition 1.4.3: (Reachable Set) 

Consider the system (1.2.3) given as 

ሶݔ                                                        = ݔ(ݐ)ܣ +  (1.2.3)                                            (ݐ)ݑܤ
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Let the solution be (ݐ)ݔ  such that 

(ݐ)ݔ        = ଴ݔ(଴ݐ)ଵିܺ(ݐ)ܺ  + (ݐ)ܺ ׬  ܺିଵ(ݏ)(ݏ)ܤ௧భ

௧బ
  ,ݏ݀(ݏ)ݑ

(଴ݐ)ܺ  is a fundamental matrix and (ݐ)ܺ ݁ݎℎ݁ݓ     = ܺ(0) =     .ܫ

We define the reachable set as 

,଴ݐ)ܴ                               (ଵݐ = ቄ׬ ܺିଵ(ݏ)(ݏ)ܤ௧భ

௧బ
:ݏ݀(ݏ)ݑ    ,єܷ ቅݑ

where U is the set of admissible controls. 

Definition 1.4.4: (Attainable Set) 

Attainable set is the set of all possible solutions of a given control system. In the case of the 

system (1.2.3), for instance, it is given as  

,଴ݐ)ܣ (ଵݐ =  ቄ (ݐ)ݔ = ଴ݔ(଴ݐ)ଵିܺ(ݐ)ܺ + (ݐ)ܺ  ׬ ܺିଵ(ݏ)(ݏ)ܤ௧భ

௧బ
   ,єܷ ቅݑ :ݏ݀(ݏ)ݑ

݈ݐ݊݁݀݅ݒܧ  , ,଴ݐ)ܴ ,଴ݔ ଵ)is a translation of attainable set through the originݐ that is  

,଴ݐ)ܣ (ଵݐ  = (ݐ)ݔ } = ଴ݔ(଴ݐ)ଵିܺ(ݐ)ܺ   + (ݐ)ܺ න ܺିଵ(ݏ)(ݏ)ܤ
௧భ

௧బ

 { єܷݑ :ݏ݀(ݏ)ݑ

                             = ଴ݔ[(଴ݐ)ଵିܺ](ݐ)ܺ  + ׬ ܺିଵ(ݏ)(ݏ)ܤ௧భ

௧బ
  [ єܷݑ :ݏ݀(ݏ)ݑ

                             = ଴ݔ     + ׬  ܺିଵ(ݏ)(ݏ)ܤ௧భ

௧బ
  єܷݑ :ݏ݀(ݏ)ݑ

                             = ଴ݔ     + ,଴ݐ)ܴ    ,(ଵݐ

since ܺ(ݐ)  is a fundamental matrix and  fundamental matrices are invertible . 

Definition 1.4.5: (Properness) 

The system(1.2.3) given as 

ሶݔ              = ( ݐ)ݔ(ݐ)ܣ + ,(ݐ)ݑ(ݐ)ܤ  is proper on the interval [ݐ଴,     ଵ]  ݂݅ and only i݂ݐ

(ݐ)ܤ(ݐ)ଵି்ܺܥ = 0, ܽ. ,଴ݐ]݊݋ ݁ ,[ଵݐ implies that ܿ = 0.  

Here, the set function     ݃(ݐ) = ,(ݐ)ܤ(ݐ)ଵି்ܺܥ is called the controllability index. 

 Lyapunov Function 

Consider the system 

ሶݔ                               = , (ݔ)݂ ݂(0) = 0                                                          (1.2.4) 

   where f ∶  D →   ܴ௡ is continuous, D is a subset of  ܴ௡݂݀݁݅݊݁݀ ܾݕ  

ܦ                                     = :єܴ௡ݔ} ∥ ݔ ∥≤  .{ݎ

The solutions of system(1.2.4) are uniquely stable for given initial data ݐ଴ , |଴ݐ | < ∞and ݔєܦ  

Here, we shall be concerned with the stability of the trivial solution. 
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Definition 1.4.6: (positive definite function) 

A function V: D→R is said to be positive definite if V varnishes only at the origin and 

(ݔ)ܸ > 0 , ݔ ݈݈ܽ ݎ݋݂ ≠ 0. 

Definition 1.4.7: (negative definite function) 

A function V: D→R is said to be negative definite if V varnishes only at the origin and 

(ݔ)ܸ < 0 , ݔ ݈݈ܽ ݎ݋݂ ≠ 0. 

Definition 1.4.8: (positive semi - definite function) 

A function V: D→R is said to be positive semi - definite function if V varnishes only at the 

origin and ܸ(ݔ) ≥ 0 , ݔ ݈݈ܽ ݎ݋݂ ≠ 0. 

    It is negative semi-definite if it varnishes only at the origin and ܸ(ݔ) ≤ 0  , ݔ ݈݈ܽ ݎ݋݂ ≠ 0. 

Definition1.4.9: (Lyapunov Function) 

Let V: D→R be continuously differentiable and positive definite on D. Let the derivative 

(called Eulers’ derivative) of V along the solution path of the system (1.2.4) be defined by 

                             ሶܸ (ݔ) =   
ௗ

ௗ௫
(ݔ)ܸ = ∑ డ௏௑ሶ ೔

డ௫೔

௡
௜ୀଵ = ∑ డ௏

డ௫೔

௡
௜ୀଵ ௜݂(ݔ), 

then Vis called a Lyapunov function for the system (1.2.4) 

Theorem 1.4.1. 

The system (1.2.3) is completely controllable or null-controllable if and only if  

,ܤ)ܴ݇݊ܽ                                  ,ܤܣ ,ܤଶܣ … , (ܤ௡ିଵܣ = ݊                                            (1.2.5)     

Example 1.4.1 

        Consider the motion of Satellite in a central gravitational field. Let the kinetic energy T 

and the potential energy P be given by  

                                        T = 
ଵ

ଶ
 m (ݎሶ ଶ , ݎଶ ሶ߰ ଶ ), P =  

௬௠

௥
 

where m is the mass of the satellite , if the product of the mass of the planet and the 

gravitational constant r  and ψ are polar coordinate of the satellite (which we idealized as a 

particle).  

               
 
 
 
 
 
 
 
 
 

ψ 

er 
eψ 

 
y 

u
2 

u1 

x 

 
 

. 
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The equations of motion are then   
 

ሷݎ   =   
ିఎ

௥మ    + r ሶ߰ ଶ 

 

                                                                                                                                                                                   (1.2.6) 

ሷ߰   =  
ିଶట௥ሶሶ

௥
 

 
                                                                                                                                             
Particular solution is given by the motion in a circular orbit with 

                                                  r = R ,  ሶ߰  =  ω =  ටߟ
ଵ

ோయ    

Deviations from this orbit are to be corrected by two rocket engines with thrust vectors in the 

direction   er   and  eψ   respectively. Thus, the equation of motion now becomes 

   =  ሷݎ
ିఎ

௥మ   +  r ሶ߰ ଶ +  ݑଵ 

 

                                                                    ሷ߰   =  
ିଶట௥ሶሶ

௥
  + 

௨మ

௥
                                            (1.2.7) 

 
  where ݑଵ and ݑଶ are the radial and transverse (normal) components of the acceleration 
respectively (with respect to the circular orbit) as produced by the rocket engines. 

 Let us now introduce the following new variables: 

 

 ଵ = r - Rݔ

 
 ሶݎ =   ሶଵݔ        = ଶݔ

                                                                                                                        (1.2.8) 

߰) =  ଷݔ −  ܴ(ݐ߱

 
) =   ሶଷݔ  =   ସݔ ሶ߰ − ߱)ܴ 

 
which represent the (small) deviations from the ideal motion 
 

  Now,  ݔሶଶ = ሷଵݔ =    – ሶ߰ଶݎ =ሷݎ
ఎ

௥మ + ݑଵ  

             

   –    ω2 (ଵ+ Rݔ ) =         
ఠమோయ

(௫భାோ)మ +  ଵݑ

 

  + ω2   −ܴ ω2 (1(ଵ + Rݔ ) =            
 ௫భ

ோ
  ଵݑ +  2-(

          

ω2  −ܴ ω2[1 – 2ቀ௫భ(ଵ + Rݔ )  =           

ோ
ቁ      +  3(  

௫భ

ோ
 )2 – 4 (  

௫భ

ோ
                 ଵݑ  +  […  +  3( 

         = 3ω2 ݔଵ −3ω2 ݔଵ
2 R-1 + 4ω2 ݔଵ

ଷ R-2 −5ω2 ݔଵ
4 R-3 + …+ ݑଵ (using Binomial Theorem).      

 ଵ +  h.o.t   ( higher order terms).                                (1.2.9)ݑ  + ଵݔ ሶଶ    =  3ω2ݔ                    ⇒

  

 

. 
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ሷଷ= ሷ߰ݔ = ሶସݔ ሶݎ2߱−) = ܴ ଵ
ሶ

௥
 + ௨మ 

௥
 1-( ܴ + ଵݔ)ଶܴݑ + 1-( ܴ + ଵݔ) ଶݔ2ܴ߱− =  ܴ( 

  + ଶ (1ݔ2߱−   =     
௫భ

ோ
  + ଶ (1ݑ +    1-(

௫భ

ோ
 )-1 

1 +   ௫భ) (ଶݑ + ଶݔ2߱− )   =     

ோ
 )-1 

 )– 1}( ଶݑ + ଶݔ2߱− )   =     
௫భ

ோ
 )1 + ( 

௫భ

ோ
 )2 – ( 

௫భ

ோ
 )3 + … }   

          ଶ    + h.o.t .                                                                                         (1.3.0)ݑ  + ଶݔ2߱−   =     

Thus, the linearized system yields  

 

 ଶݔ  = ሶଵݔ

 ଵ                                                                               (1.3.1)ݑ +  ଵݔ ሶଶ  = 3߱ଶݔ                                                            

 ସݔ  = ሶଷݔ

 ଶݑ + ଶݔሶସ    =  −2߱ݔ

 
with    ்̅ݔ   (ଶݑ ଵݑ) =   ത்ݑ   and ,( ସݔ  ଷݔ ଶݔ  ଵݔ )   =    
  
We have the equivalent system (1.2.3) with 
                                                    
                                                                               
           0     1   0   0                                                                0         0 

           3ω2 0   0   0                                                                1         0 

           0     0   0   1                        ;                                       0         0 

           0 -2ω   0   0                                                                0         1                                                             

 
which provides a first approximation to the controlled motion in a neighborhood of the 

reference orbit. 

 To determine the controllability of the system, we compute 

rank ( B, AB, A2B, A3B )  and show that it equals 4. 
 
                                           
                                                            0  0  1   0   0       0    3ω2   0 

Now, rank (B, AB, A2B, A3B)  =       1  0  0   0  3ω2    0     0       0             =     4 = n. 

                                                            0  0  0   1 -2ω     0     0       0  

                                                            0  1 -2ω 0 -6ω3   0     0       0  
 

Thus, the system is completely controllable. This means that the satellite can be steered to 

“always” move in the circular orbit. 

. 

A = B = 
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 Suppose one of the rocket engines breaks down or is shut down for some reason; will the 

system remain completely controllable? Let us suppose the engine providing the radial thrust 

is shut down, then only the transverse (tangential) thrust is available, the   BT  =  (0 0 0 1).

  

Computing, we have                          0   0   0   0 

    Rank(B,AB,A2B, A3B)  =  rank     0   0   0   0                 =  2  ≠ 4   

                                                            0   1   0   0   

                                                            1   0   0   0 

The system, therefore, is no longer completely controllable. 

    Suppose now the engine providing the transverse thrust is shut down, then only the radial 

thrust is available. Then 

                                                    BT    =  ( 0 1 0 0 )  
Computing, we have  
 
                                                                             0  1   0      3ω2  

rank (B ,AB ,A2B,  A3B )    =        rank              1  0  3ω2   0                =   3  ≠  4. 

                                                                             0  0  -2ω   0 

                                                                             0 -2ω  0   -6ω3                    

The system is again no longer completely controllable. Thus, once one of the engines is shut 

down, the satellite can no longer be “constrained” to move along the circular (reference) 

orbit. 

1.5 .Functional Differential Equations 

      Definition 1.5.1. 

Functional differential equation is an equation (ordinary differential equation) where the 

derivative at various time instances t-hi, (i = 0,1,2,…,n) is a relation to the state of the 

equation at equally various time instances. It is a more general type of differential equation. It 

comprises: 

(a) .    Retarded equation and    (b).      Neutral equation. 

Definition 1.5.2:  (Retarded Functional Differential Equation) 

Retarded Functional differential equations are differential equations where the 

derivative of the state is expressed in terms of the state at various time instances   t-hi,  

(i =1, 2, 3,…, n)  

Example 1.5.1 

ݐ)ݔ3 + (ݐ)ݔ2 =  (ݐ)ሶݔ           − ℎ)      ,where  ݔሶ  .(ݐ)ݔ  is a derivative of a state (ݐ)
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ሶݔ ݐ)ݔ +1 =  (ݐ) − ݐ)ݔ + (1 −  . (ݐ)ݔ + (2

Here,   1 = constant  

ݐ)          − 1)= a day or a year ago. (I.e. earlier time) 

ݐ)          − 2)= 2 days or 2 years ago. 

             t   = presently or present time. 

Difinition1.5.3: (Neutral Functional Differential Equation) 

Neutral Functional Differential Equation is the differential equation, where the 

derivative of the state at previous and present time instances is expressed in terms of time t. 

Example 1.5.2 

ሶݔ (ݐ) − ሶݔ  ݐ) − (ݐ)ݔ   =   (1 + ݐ)ݔ2 − ݐ)ݔ3 +(1 − 2) 

1.6. Difference between Retarded Functional and Neutral Differential 

Equations 

           Difference between the retarded functional differential equation and the neutral 

functional differential equation is that the retarded functional differential equation contains 

present time in its derivative, while the neutral functional differential equation contains both 

present and previous (past) time in its derivative. The retarded or the neutral functional 

differential equation is called Delay Equation. 

       Usually in the neutral functional differential equation, we define a continuous linear 

operator D to represent the derivative of the state at present, and earlier time instances. 

That is,   D(࢚,   ,is called the functional difference operator (࢚࢞

where          (࢚, ,ݐ)D   (࢚࢞ ݐ)ݔ–(ݐ)ݔ  =  (௧ݔ − 1) . 

We can now rewrite the equation of Example 1.5.2 in terms functional operator thus: 

 
ௗ

ௗ௧
,ݐ)ܦ]      =    [(௧ݔ

ௗ

ௗ௧
ݐ)ݔ–(ݐ)ݔ] − (ݐ)ݔ    =  [ (1 + ݐ)ݔ2 − ݐ)ݔ 3 +(1 − 2) . 

ሶݔ  =                              (ݐ) − ሶݔ ݐ) − (ݐ)ݔ   =   (1 + ݐ)ݔ2 − ݐ)ݔ 3 +(1 − 2) . 

1.7.   General Form of Functional Differential Equation. 

             The initial conditions for general differential equation and functional differential 

equations are respectively given by:  

ሶݔ                             ,ݐ)݂   =     ଴  ,                                                        (1.3.2)ݔ =      (଴ݐ)ݔ ;  (ݔ

Here, ݔ଴ is a vector (i.e. initial point is a vector) and 

ሶݔ                              ,ݐ)݂  =        ф.                                                             (1.3.3) = (଴ݐ)ݔ ; (௧ݔ

Here the initial point φ is a function defined in the delay interval [-h, 0], h > 0 , 

(଴ݐ)ݔ                                          = ௧బݔ   
= ф     
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Definition 1.7.1: (Retarded functional differential equation) 

In Functional Differential Equation of the retarded type, whose general equation is given by  

ሶݔ                                           ,ݐ)݂ =    ,  (௧ݔ

we prescribe an initial function  ݔ(ݐ଴)  =  ݔ௧బ    = ф    ,  

over the delay interval [-h, 0],  h > 0  

Definition1.7.2: (Neutral Functional Differential Equations)  

In functional differential equation of the neutral type, whose general equation is given by 

                                
ௗ

ௗ௧
  [D(ݐ,  ,(௧ݔ,ݐ) ௧)]      =      fݔ

we also prescribe initial function  ݔ(ݐ଴) =  ݔ௧బ
 =  ф  , over the delay interval  [-h, 0],  h > 0 

Definition 1.7.3  

Let (ݐ)ݔbe a function defined over the interval ( -∞ ,t ) , the function ࢚࢞  is defined over the 

delay interval [-h, 0] such that 

ݐ)ݔ  =  ௧ (s)ݔ                                           +  .s є [-h, 0] ; (ݏ

1.8. General Solution Format or Variation of Parameters. 

         Consider the delay equation (retarded type) 

ሶݔ                                         ,ݐ)݂  =   ௧బݔ =  (଴ݐ)ݔ ; (௧ݔ
  = ф,    

The solution format is given by direct integration with respect to time t to get, 

׬  + ф(0)  =  (ݐ)ݔ                                  ݂൫ݏ, ൯(ݏ)௧ݔ
଴

ି௛ ds ,        t > 0                                  (1.3.4) 

If it is the neutral functional differential equation given by  

                                 
ௗ

ௗ௧
[D(ݐ, ,ݐ)݂  =       [(௧ݔ ௧೚ݔ   =  (଴ݐ)ݔ  ; (௧ݔ    = ф,    

the solution format (variation of parameter) is given as 

                          D (t,ݔ௧)   =      ф (0) +  ׬ ,ݏ)݂ ௧ݔ
଴

ି௛
 ds,        t > 0                             (1.3.5) (  (ݏ)

1.9.   Volterra Integral Equations 

         In applied mathematics, mathematical physics, radioactive transfer, theory of 

population and in engineering, most formulations are often presented in the forms of integral 

equations. 

An integral equation is an equation in which the function to be determined appears under an 

integral sign. 

In ordinary differential equations, integral equations can either be linear or non-linear. The 

linear integral equations were grouped into two, namely 
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 (a).  Fredholm integral equations and  (b).Volterra integral equations. 

Example 1.9.1 (Fredholm integral equations and/or forms) 

׬                                            ,ݔ)ܭ ௕(ݕ
௔ ф(ݕ)݀(ݔ)݂ = ݕ                                                        (i) 

                                            ф(ݔ) – λ ׬ ,ݔ)ܭ ௕(ݕ
௔ ф(ݕ)݀(ݔ)݂ = ݕ                                       (ii) 

׬λ –  (ݔ)ф(ݔ)ߙ                                          ,ݔ)ܭ ௕(ݕ
௔ ф(ݕ)݀(ݔ)݂ = ݕ                                  (iii) 

Equation (i) is called Fredholm integral equation of first kind.  While equation (ii) is the 

Fredholm integral equation of the second order and equation (iii) is the Fredholm 

integral equation of the third kind. In all the three forms of Fredholm integral equations 

 [(i) -    (iii)], ݔ)ܭ,  which appears under the integral sign is (ݕ)is called the kernel and ф (ݕ

the dependent variable meant to be determined.  The integral from a- b may be infinite or 

may take the forms: (-∞,b] or [a,∞) or (-∞,∞). 

Example 1.9.2: (Volterra integral equations and/or forms). 

׬ =   (࢞)ࢌ            .1 ,࢞)ࡷ ࢞(࢟
ࢇ ф(࢟)࢟ࢊ  

λ – (ݔ)ф  =   (࢞)ࢌ             .2 
x

a

yxK ),(  ф(࢟)࢟ࢊ  

λ –   (ݔ)ф(ݔ)ߙ  =    (࢞)ࢌ            .3 
x

a

yxK ),(  ф(࢟)࢟ࢊ  

We observe that the upper limit in the above equations (1) – (3) is a variable x and not a 

constant as in the case of Fredholms’. 

Definition 1.9.1: (Closed Operators) 

 An operator T: X → Y , where X, Y are linear spaces is said to be closed if for any 

sequence unєD(T) such that un → u 

 and Tun → v   , u є D(T) and Tu   =  v 

1.10. Existence and Uniqueness of Optimal Control for Linear Neutral 

Volterra Integro-Differential Systems 

       We recall here that our system of investigation is given by 

݀
ݐ݀

ቈ(ݐ)ݔ − න ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − (ݐ)݃
௧

଴
቉ = (ݐ)ݔ(ݐ)ܣ + න ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ

௧

଴
 

                                                                + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                                   (1.3.6) 

For purposes of clarity, we define the following terminologies as they relate to system (1.3.6) 

With solution given by 
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x(t)  =  X(t ,0)[ x(0) –  g(0) ]  +  g(t)  − ׬ ( డ

డ௧
 ) X(t, s)g(s)ds 

௧
଴     

                      + ׬ dH஘ ׬  X(t , s − θ)H(s − θ, θ)ݑ଴(s)ds
୲ା஘

஘
଴

ି௛   

                      + ׬ ቂ׬ X(t , s − θ)dθH∗( s − θ, θ) u(s) ds
଴

ି௛  ቃ
௧

଴                                          (1.3.7) 

Definition 1.10.1: (Complete state) 

The complete state for system (1.3.6) is given by the set z (t) = {x, ݑ௧  } . 

Definition 1.10.2: (Relative Controllability) 

The system (1.3.6) is said to be relatively controllable on [0,ݐଵ] if for every initial complete 

state z(0)  and ݔଵ є ܧ௡, there exists a control function u(t) defined on [0,ݐଵ]  such that the 

solution of system (1.3.6) satisfies ݔ(ݐଵ)  =  ݔଵ . 

Definition 1.10.3:     (Reachable Set) 

The reachable set for the system (1.3.6) is given as  

,ଵݐ)ܴ                            0) = ቄ׬ ׬] ,ݐ)ܺ ݏ − ݏ)∗ܪఏ݀(ߠ − ,ߠ ݏ݀[(ݏ)ݑ(ߠ
଴

ି௛
௧

଴ ቅ                       (1.3.8) 

Definition 1.10.4:        (Attainable Set) 

The attainable set for the system (1.3.6) is given as   , A(t, 0) = {x (t,  ݔ଴, u) : u є U} 

where   ,   U =    { u є L2 ( [0, t,], Em ) : │ݑ௝│ ≤ 1 , j= 1,2,…., m} 

Definition 1.10.5:     (Target Set) 

The target set for system (1.3.6) denoted by G (ݐଵ, 0) is given as 

G(t1, 0) = { x( ݐଵ,  ݔ଴, u) :  ݐଵ ≥ т > ݐ଴ for fixed т and u є U} 

Definition 1.10.6:      (Controllability Grammian) 

The controllability grammian for the system (1.3.6) is given as  

                                         ܹ(0, (ݐ = ׬ ,ݐ)ݖ ௧்ݖ(ݏ
଴

,ݐ)    .ݏ݀(ݏ

,ݐ)ݖ   ݁ݎℎ݁ݓ   (ݏ = ׬  ,ݐ)ܺ ݏ − ݏ)∗ܪఏ݀(ߠ − ,ߠ ଴(ߠ
ି௛   and  т denotes matrix transpose. 

Definition 1.10.7: (Relative Controllability) 

 The system (1.3.6) is relatively controllable on [ 0,  ݐଵ  ] if 

,ଵݐ)ܣ                                    0) ∩ ,ଵݐ)ܩ 0) ≠ ଵݐ ;∅ > 0   

Definition 1.10.8: (Properness) 

The system (1.3.6) is proper in  En on   [0,  ݐଵ], if   span R( t, 0) = En  that is if   

׬]்ܿ      X(t, s − θ) d஘H∗(s −  θ, θ)] = 0 
଴

ି௛       (almost everywhere.), ݐଵ > 0 ⇒ ܿ = 0;     ௡ܧ߳ܿ
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1.11. Global Uniform Asymptotic Stability for Nonlinear Infinite Neutral  

Differential Systems 

In stability theory, the desire is to achieve that solutions near the origin remain quite close for 

all future times. The desire to maintain a constant for the solutions of a system over time has 

given rise to different variants of stability. We have in the literature, uniform stability, 

asymptotic stability, exponential stability of neutral equations, (see Cheban (2000), Chukwu 

(1992), Chukwu (1981), Hale (1977), and Onwuatu (1994)). 

 The study of stability of neutral systems has given impetus to the task of investigating 

the stabilization of nonlinear neutral system. This is the ever growing interest by researchers 

in stability theory (see Eke (2000)). 

 The methods involved the computation of the eigen-values of certain matrices. With 

the computer now in vogue, the computations involved are less tedious.  

The energy method of Alexander Mrkhailovick Lyapunov (1829), which revolves around 

the notion that in a stable system, the total energy in the system would be a minimum at 

the equilibrium point. The total energy is called the Lyapunov function, whose derivative 

along the solution path must be negative semi-definite for the solution of the system to have 

small upper bound, (see Hmanmed (1986)). The energy method has provided approval 

method for discussing stability of various non-linear functional equations. In his work, 

Chukwu (1992) extended the work in Cruz and Hale (1970) by monitoring nonlinear 

functional equations with positive definite Lyapunov functions where explicit solutions 

cannot be guaranteed. Hale (1977) has discussed extensively on the stability of nonlinear 

neutral equations using various methods, providing exponential estimates of solution of same 

thereby lending clarity of meaning to exponential stability ,which in Chukwu (1992) and 

Chukwu (1981) was extended to asymptotic exponential stability in the large for neutral 

systems. Stability of perturbations of linear neutral systems has received appreciable 

emphasis in Chukwu (1992) and Chukwu (1981). 

 In Onwuatu (1993) stability of infinite neutral systems is reported. We hope to 

extend the works in Onwuatu (1993) to systems of the form. 

   
ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ     =   L(ݐ, ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ଴(ݐ)ܣ

ିஶ ݐ)ݔ + ఏ݀(ߠ  , ௧బݔ
=  ф.                   (1.3.9)                                    

                               (a nonlinear infinite neutral system) 

Now, let n be a positive integer and E = (- ∞, ∞) be the real line.  Denote by ܧ௡ the space of 

real n- tuples called the Euclidean space with norm denoted by │.│    
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If   J = [a ,b] is any interval of E, L2 is the Lebesgue space of square integrable functions from 

J to ܧ௡ written in full as  L2 ([ a, b] , ܧ௡ )  . 

Let   h > 0 be a positive real number and let C ([-h,0], ܧ௡ )     be the Banach space of 

continuous function with the norm of uniform convergence defined by 

║ ф║   = supф(s),     -h ≤ s ≤ 0, for   ф є C ([-h, 0], ܧ௡ ), 

,ℎ−]݉݋ݎ݂ ݊݋݅ݐܿ݊ݑ݂ ܽ ݏ݅ ݔ ݂ܫ ,௡ܧ ݋ݐ (∞ ℎ݁ݐ ℎ݈݁݀݁ܽݐ݊݋ ℎ݁ݐ ݊݋ ݂݀݁݊݅݁݀ ݊݋݅ݐܿ݊ݑ݂ ܽ ݏ݅ ௧ݔ         ݈ܽݒݎ݁ݐ݊݅ 

ݏܽ ݊݁ݒ݅݃ ௧(ݏ) = ݐ)ݔ + ;(ݏ ,ℎ−]߳ݏ 0], ,0]߳ݐ ∞).  

Consider the nonlinear infinite neutral system. 

      
ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ׬ ∞(ݐ)ܣ

଴ ݐ)ݔ + ఏ݀(ߠ + ,ݐ)݂  ௧)                        (1.4.0)ݔ

݁ݎℎ݁ݓ ,ݐ) (௧ݔ = ∑ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀଵ + ׬ ଴(ݐ)ܣ

ିஶ ݐ)ݔ +             ఏ݀(ߠ

,ݐ)ܮ  ௧ݔ(௧ݔ = ׬ ݀ఏη൫ݐ, ,ݏ ݐ)ݔ + ൯(ݏ
଴

ି௛ ݐ)ݔ +       (ߠ

 η(t, s, ф, ψ) ≥ 0, for s ≥ 0 , and ф, ψϵC 

                                            η(t, s, ф, ψ) = η(t, s, ф, ψ) for  t < −ℎ.  

 η( t, s, ф, ψ) is a continuous matrix function of bounded variation in s є[−h ,0 ],  

η(t) ݎܽݒ ≤ m(t), m(t)ϵLଵ. 

L1 is the space of integrable functions. Let Ω be an open subset of  ExC and D and L be 

bounded linear operators defined on ExC into En. 

,ݐ)ܮ|  |(ݐ)ݔ(௧ݔ ≤ ,‖௧ݔ‖(ݐ)݉ ,ܧ߳ݐ ݈݈ܽ ݎ݋݂ ψ(t) є ۱.    

,ݐ)ܦ (௧ݔ = ,ݐ)݃(ݐ)ݔ    ݁ݎℎ݁ݓ   ,(௧ݔ

,ݐ)݃  (௧ݔ = ∑ ∞(ݐ)௡ܣ
௡ୀ଴ ф(t − w୬(t)) + ׬ ,ݐ)ܣ ଴(ݏ

ି௛ ф(ݏ)݀ݏ = ׬ ݀ఏݐ)ܪ, ଴(ߠ
ି௛ ф(ߠ),  

0   ݁ݎℎ݁ݓ  ≤ ௡ݓ  ≤ ℎ ܽ݊݀ | ׬ ݀ఏݐ)ܪ, ଴(ߠ
ି௛ ф(ߠ) | ≤ ℎ(ߐ)‖ф‖      

,ݐ)ܦ  ࢔࢕࢔  ݏ݅ (௧ݔ −   ( differentiable and integrable at zero)࢕࢘ࢋࢠ ࢚ࢇ ࢉ࢏࢓࢕࢚ࢇ

׬     ,ݐ)ܣ| ݏ݀|(ݏ
଴

ି௛ + ∑ ஶ(ݐ)௡ܣ|
௡ୀଵ | ≤  δ(є) , for all t , where  δ(є)  → 0 . 

f  is continuous and satisfies other smoothness conditions.  

Consider  the  system (1.4.1) below: 

 ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

ஶ
଴ + ,ݐ)݂  .௧)                         (1.4.1)ݔ

           (Circularity of the function from -∞ to 0, and from 0 to ∞) 
We can linearize the system (1.4.1. ) as in ۱ܝܟܓܝܐ (૚ૢૢ૛) by setting ݔ௧ =  ; ݖ

ܽ specified function inside the function ݐ)ܮ, ,L(t ݁ݒℎܽ ݋ݐ ௧ݔ(௧ݔ z )ݔ௧ݐ݅ݓℎ ݊ݕݐ݈݅ܽݎ݁݊݁݃ ݂݋ ݏݏ݋݈ ݋.      

Thus , the system (1.4.1) becomes 

 



18 

 

ௗ

ௗ௧
,ݐ)ܦ (௧ݔ = ,ݐ)ܮ ௧ݔ(ݖ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

ஶ
଴ + ,ݐ)݂  ௧)                               (1.4.2)ݔ

Evidently, 

,ݐ)ܮ ௧ݔ(ݖ = ∑ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

଴
ିஶ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

ஶ
଴     (1.4.3)                                                                                                   

,ݐ)∗ܮ ௧ݔ (ݖ = ∑ ݐ)௞ܣ − ௞) ஶݓ
௞ୀ଴ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

ஶ
ିஶ                                                  (1.4.4) 

ܶℎ݁ ܮ ݏ݊݋݅ݐܽݐ݊݁ݏ݁ݎ݌݁ݎ,   are the same under the following assumptions ∗ܮ

,ݐ)ܮ  ௧ݔ(ݖ = lim௣→ஶ ∑ ݐ)ݔ௞ܣ − ௞)௣ݓ
௞ୀ଴ + limெ,ே→ஶ ׬ ,ݐ)ܣ ,ݐ)ݔ(ߠ ݏ݀(ߠ

ே
ெ                 (1.4.5) 

We assume the limits exist, giving finite partial sum for the infinite series and the improper 

integrals. Thus the system 

,ݐ)∗ܮ ௧ݔ(ݖ = ∑ ݐ)௞ܣ − ௞)ஶݓ
௞ୀ଴ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

ஶ
ିஶ ,  

           is finite and well defined function.   

In the light of the above,the system (1.4.1) reduces to 

             
ௗ

ௗ௧
,ݐ)ܦ] [௧ݔ(ݖ = ,ݐ)ܮ ௧ݔ(ݖ + ,ݐ)݂ ;(௧ݔ (଴ݐ )ݔ = ф߳(1.4.7)                                         ܥ 

,ݐ)ܮ     ,݁ݎℎ݁ݓ ௧ݔ(ݖ = ෍ ݐ)ݔ௞ܣ − (௞ݓ

௣

௞ୀ଴

+ න ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

଴

ି௛
, 

Integrating   (1.4.7), after linearizing, we have  

(ݐ)ݔ                                            = ,ݐ)ݔ ,଴ݐ ф, 0) + ׬ ,ݐ)ܺ ,ݏ)݂(ݏ ݏ݀(௦ݔ
௧

଴  ,                                (1.4.8) 

Where, X(t ,s) is the fundamental matrix of the homogenous part of the system  (1.4.7). 

X (t, s) = I      (identity matrix); t = s 

From the transformation in Hale (1977), there is a linear operator T such that 

                                    ܺ௧(ݏ)ф = ,ݐ) ;(ߠ)ܺ(ݏ  (1.4.9)                                                   .[ℎᇱ0−]߳ߐ

ݐ)ܺ                                        + ,ߠ (ݏ = ,ݐ)ܶ                                      (ߠ)ܺ(ݏ

 For ө =  0, we have   ܺ(ݐ, (ݏ = ,ݐ)ܶ (ݏ = ,ݐ)ܶ ,(ݏ where T is defined as follows:    

,ݐ)ܶ       (݅) is an operator defined on C(ݏ =  C ([−h, 0], E୬), ,ݐ)ܶ   .is bounded for T є C(ݏ
 (݅݅)     ܶ(0) =   .ݏݑ݋ݑ݊݅ݐ݊݋ܿ ݕ݈݃݊݋ݎݐݏ ݏ݅ ܶ  ݀݊ܽ ܫ
,ݐ)ܶ     (݅݅݅)   .is completely continuous in t(ݏ
The family { (ݐ, ݐ ݎ݋݂ (ݏ > is a semi{ݏ − group of linear transformations,   

൫ܝܟܓܝܐ۱ ܍܍ܛ(૚ૢૡ૜)൯for these properties.  Now writing (1,4.8)in terms of ܶ(ݐ,             ,(ݏ

, ݁ݒℎܽ ݁ݓ  ,ݐ)ݔ ,଴ݐ ф, ݂) = ,ݐ)ܶ] ଴)]ф(0)ݐ + ׬ ,ݏ)ܺ ݏ݀(௦ݔ
௧

௧బ
.                                                (1.5.0) 

We now define the following: 



19 

 

Definition: 1.11.1:  (stability) 

The trivial solution x =  0,   of system (1.4.1) is ܍ܔ܊܉ܜܛ if for any given ݐ଴є E   

 and a positive number ε >  0, = ߜ ݏݐݏ݅ݔ݁ ݁ݎℎ݁ݐ ,଴ݐ ) ߜ  ε) such that ф є B(0, ε),  

implies that 

,଴ݐ)௧ݔ  ф) є β(0, δ)  for all  t ≥  t0 , фєC and ۰(૙, ,is a ball centered at 0 (ܚ with radius r. 

Definition 1.11.2:  (uniform stability)  

The trivial solution x = 0   of the system (1.4.1) is said to be uniformly stable if for any ε >0,  

there exists δ =  δ(ε) (independent of ݐ଴) such that фє B(0, ε)  implies   

,଴ݐ)௧ݔ  ф) є B(0, δ) ,   for all ݐ >    ଴ݐ

Definition 1.11.3: (asymptotic stability)    

The trivial solution x = 0 , of  the system (1.4.1)  is asymptotically stable if it is stable 

  such that ф є B(0 , δ)   implies that   ݔ௧ (ݐ଴, ф) →0  ,    as  t →∞             

Definition 1.11.4:  (uniform asymptotic stability)   

The trivial solution of the system (1.4.1) is uniformly asymptotically stable if the system is 

uniformly stable and for фє B(0, δ) ,  implies ݔ௧  .       ∞→0      as t → (଴, фݐ) 

The solution ݔ௧  of system (1.4.1) is exponentially asymptotical stable if there exist (଴, фݐ) 

constants  ݇ > 0 ,and ܿ > 0, such that the solution satisfies  

௧బݔ                                   ௧ݔ ║ ф and = (଴, фݐ)   ௖(௧ି௧బ)݁݇  ≥   ║(଴, фݐ) 

Remark: 1.11.1 

 If the choice of the initial function ф є C ([-h,0], En)  is arbitrary, then  

Definition (1.11.4) is said to be exponentially asymptotically stable in the large and so we 

have global results that generally defines global conditions. 

A homogenous linear neutral equation is given by 

                                  
ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ =   [  (௧ݔ  ௧)                                                                (1.5.1.)ݔ

,ݐ)ܦ  ௧)  is called the functional difference operator. We now give the condition for theݔ

uniform stability of the functional difference operator. 
 

1.12.   Existence of Mild Solution of Nonlinear Neutral Differential 

Equations in Banach Spaces 

The primary motivation of the study of neutral functional differential equations is that 

it has wide range of applications (see Balachandran and Anandhi (2003), Balachandran 

and Dauer (1996)). Balachandran and Dauer (1996) have pointed out their application in 
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transmission line theory. They explained that the mixed initial boundary hyperbolic 

differential equation which arises in the study of lossless transmission lines can be replaced 

by an associated neutral differential equation. Asuquo and Usah (2008), Chukwu (1992), 

and Iheagwam and Nse (2007), have provided complex economic models governed by 

neutral differential equations and have provided broad policy guidelines for the control of 

regional economy to equilibrium state. 

 Neutral systems have also been cited to have applications in population studies and 
Engineering, in nuclear reactor dynamics, (see Balachandran and Dauer (1996), Fu and 
Ezzinbi (2003)). 
 Many studies have investigated the conditions for the existence of solutions of linear and 

non-linear neutral systems. Notably, among them are in Balachandran and Dauer (2002), 

Balachandran and Leelamani (2006), Fu and Ezzinbi (2003). The presentation in; 

Balachandran and Anandhi (2003), Balachandran and Dauer (1996 ), Balachandran 

and Sakthivel (1999 ) have introduced a twist in the study of neutral systems by investigating 

linear and non-linear neutral volterra integro differential equations. These efforts provided 

more advanced method of integration yielding the variation of parameters (see 

Balachandran and Anandhi (2003)). The theory of neutral differential equation is currently 

being carried out in Banach spaces, (see Balachandran and Anandhi (2003), 

Balachandran and Leelamani (2006), Umana (2008)). 

݀
ݐ݀

(ݐ)ݔ] + ,ݐ)݃ ,(ݐ)ݔ ,൯(ݐ)ଵݑ൫ݔ … , [(((ݐ)௠ݑ)ݔ

= ,ݐ)ܮ (௧ݔ + ℎ ቀݐ, ,(ݐ)ݔ ,൯(ݐ)ଵݒ൫ݔ … ,  ൯ቁ(ݐ)௡ݒ൫ݔ

(ߐ)ݔ = 0; ,ℎ−]߳ߐ 0], .0]߳ݐ ,[ଵݐ ଵݐ > 0                                                                       (1.5.2), 

With the purpose of obtaining mild solutions of the system(1.5.2) in the Banach spaces ,using 

the Schaefer’s Fixed Point Theorem. 

In the system (1.5.2), g, L, h are the systems parameters. L is the infinitesimal generator of a compact analytic semi

,ݐ)ܮ ׬ =  (௧ݔ .)ߟ݀ , ,ݏ ф)଴
ି௛ ݐ)ݔ + (ݏ = ∑ ݐ)௞ܣ − ௞)ஶݓ

௞ୀ଴ ׬ +  A(t, θ)x(t +  θ)
଴

ିஶ ݀ఏ  

is a bounded linear operator, where the n x n matrix functions ܣ௞, A(t, θ) are measurable in 

((t, s) є E x E,  θє [- ∞, 0).   η is normalized such that 

η (t, s, ф) = 0, s ≥ 0 for all ф 

η (t, s, ф) = η (t, -h, θ) for all s ≤ -h 

η (t, s, ф)  is continuous from the left in s on (-∞, 0] and has bounded variations on  (-∞, 0] 

for each t, ф and there is an integrable function M such that 
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,ݐ)ܮ ║  .[௧║       ,for all t є ( -∞,∞ ), ф є ( -∞,0ݔ║ ௧)   ║ ≤   M(t)ݔ

We assume     L(t, ф) is continuous.     Let   0єD(L), then the fractional power La  for   , 

 0 < a < 1   as closed linear operator on its domain   D ( La ) is dense in X. Furthermore, 

   D( La ) is  a Banach space under the norm 

 ║x ║a   =  ║ La x║       for  all  x є D ( La )    and it is denoted by   ܺ௔.   h is a  

function defined on the product space  Jxܺ௡ାଵ     into  X 

g : [0,ݐଵ] x ܺ௡ାଵ  → X,   is a continuous function. 

The delays ݑ௜(ݐ), ݒ௝(ݐ), are continuous scalar valued functions defined on J 

such that    ݑ௜(ݐ) ≤ t     and ݒ௝(ݐ) ≤ t.        

That is, these are values preceding t. We define the supremum norm on X  by       

║x║ = max௫є௑ |x (t)|. 
The imbedding   ܺ௔ → ܺ௕      for 0< b < a < 1 is compact whenever the resolvent operator L 

is compact. For semi-group {T(t) }, the following properties will be used: 

(i) There is a number    ଵܰ > 1 such that ║T (t)║ ≤ ଵܰ  for all t є [0, ݐଵ]. 

(ii) For any a > 0, there exists a positive constant ଶܰ such that  

     ║La T (t)║ ≤   
ேమ

௧ೌ  ,           0 < t < τ 

To study system (1.5.2), we assume the hereditary property of the function. 

Let          x: (-∞,τ ] → X ,ݔ௧    is a function defined on the delay interval  ( -∞ ,0 ]   

such that       ݔ௧ (θ)   = x (t + θ)    , belongs to some abstract phase space (-∞, 0]   . 

In this work, the state space will be the abstract phase space   C ([-∞, 0]) 

Definition 1.12.1:   (mild solution) 

A function    ݔ(. )   is called a mild solution of the system (1.5.2) if   

 , [ for t є ( -∞ ,0    ,      0 =   (ݐ)ݔ                              

the restriction of  (ݐ)ݔ   to the interval  [ 0, τ ]   is continuous and for each  [ 0, τ ], the 

function  (ݐ)ݔ    satisfies  system( 4.4.3).  That is, the function  (ݐ)ݔ  satisfies the following 

integral equation: 

 {(௠(t)ݑ)x,…,(ଵ(t)ݑ)t ,x(t),x}g - [(௠(0)ݑ)x,…,(ଵ(0)ݑ) 0 ,x]T(t){0 + g  =   (ݐ)ݔ

                         − ׬ LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s))) ds 
௧

଴  

                          + ׬ T(t − s)h(  s , x(s), x(ݒଵ(s)), … , x(ݒ௡(s)))ds  
௧

଴                               (4.4.3) 

where   LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s)))  is integrable for    s є ( -∞, t ] . 
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CHAPTER 2. 
 

REVIEW OF THE LITERATURE 
 
2.1   Introduction      

     As stated earlier, the study of controllability dates back as far as the sixties. Over the 

years, research has been going on in this area for varying linear, semi- linear and nonlinear 

systems. There are many definitions of controllability as well as the types which strongly 

depend on the class of control systems. Various controllability problems for different types of 

nonlinear differential systems have been considered. However, it should be stressed that, 

most of the reported works in this area has been mainly concerned with controllability for 

linear dimensional systems with constrained control and without delays. For instance: 

Chukwu (1982) settled the time optimal control problem of linear neutral systems without 

delay given by the differential system 

                                           
ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ =  [(௧ݔ  (2.1.1)                           (ݐ)ݑ(ݐ)ܤ +  (௧ݔ

                                                                  t ≥ 0 , ݔ଴ = ф 

where the control set is a unit cube in the m-dimensional Euclidean space and the target is a 

continuous set function in an n-dimensional Euclidean space. In his work, necessary and 

sufficient conditions for the existence and uniqueness of optimal are given. 

Balachandran, Dauer and Balasubramana (1997) in their work on the Asymptotic Null 

Controllability of Nonlinear Neutral Volterra Integrodifferential System, studied the system 

ௗ

ௗ௧
ቂ (ݐ)ݔ − ׬ ݐ)ܥ − ݏ݀(ݏ)ݔ(ݏ − (ݐ)݃

௧
଴ ቃ  = A׬ + (ݐ)ݔ ݐ)ܩ − ݏ݀(ݏ)ݔ(ݏ

௧
଴   (ݐ)ݑ(ݐ)ܤ + 

,ݐ) +                                                     ,(ݐ)ݔ  (2.1.2)                                                         ; ((ݐ)ݑ

(଴ݐ)ݔ                                                                  =   ଴ݔ 

They obtained results using the Leray-Schauder fixed point theorem. 

   Another important work in the literature without delays in the control is the remarkable 

work of Sontag (1994).He dealt with the questions associated with testing controllability of 

nonlinear systems both those operating in continuous time, that is, system of the type 

,(ݐ)ݔ൫݂ = (ݐ)ሶݔ                                                       ൯                                                    (2.1.3)(ݐ)ݑ

and discrete time systems described by difference equations 

,(ݐ)ݔ൫݂ =  (ݐ)௧ݔ                                                          ൯                                              (2.1.4)(ݐ)ݑ

where the superscript “t” is used to indicate time shift   ݔ௧(ݐ) =  ݐ)ݔ + 1)  
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In principle he studied controllability from the origin. This is the property that for each state 

 .єܴ௡ there will be some control driving 0 to x in finite time(ݐ)ݔ

  Eke (1990) proved the null controllability of a linear control system by means of the Leray-

Schauder’s fixed point theorem. The method he used involved the development of sufficient 

conditions that guarantee the existence of at least one solution of the control system which 

can be steered to zero in finite time. His system is given as 

ሶݔ                                       .without delays ,         (ݐ)ݑ(ݐ)ܤ + (ݐ)ݔ(ݐ)ܣ = (ݐ)

     Eke (2000) also studied the stabilizability for linear feedback observable systems given by 

(ݐ)ሶݔ                                                     =           (ݐ)ݑܤ + (ݐ)ݔܣ

 (2.1.5)                                                0  = (0)ݔ                                                   

 (ݐ)ݔܪ  = (ݐ)ݕ                                                   

His paper investigated conditions under which linear control systems which are completely 

observable are stabilizable. 

       Another work in the literature without delays is the work of Eke (1990) on Total 

controllability for nonlinear perturbed systems given by 

(ݐ)ሶݔ                                          = ,ݐ)݂ (ݔ  (2.1.6)                                                            (ݐ)ݑ(ݐ)ܤ +

 ଴ݔ = (଴ݐ)ݔ                                        

and its perturbation 

ሶݕ                                    = (ݐ) ,ݐ)݂ (ݕ (ݐ)ݑ(ݐ)ܤ +  + ,ݐ)݂ ,(ݐ)ݕ  (2.1.7)                              ((ݐ)ݑ

 ଴ݕ = (଴ݐ)ݕ                                  

    He used Leray-Schauder fixed point theorem to develop sufficient conditions which 

guaranteed that whenever an unperturbed nonlinear system is 0-controllable that is, to a 

target, then so is its perturbation.  

Gradually interest began to grow in the study of controllability with delays in state, control or 

both. Evident in literature are the works of the following authors; 

        On their work on the relative controllability and Null-controllability of linear delay 

systems with distributed delays in the state and control, Iheagwam and Onwuatu (2005) 

provided necessary and sufficient conditions for the relative, absolute controllability and null-

controllability for the generalized linear delay systems and its discrete prototype given by 

ሶݔ                                  ,ݐ)ܮ= (ݐ) ׬ + (௧ݔ ݏ݀
଴

ି௛ ,ݐ)ܪ ݐ)ݑ(ݏ +  .(2.1.8)                                               (ݏ
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 The paper presents illuminating examples on the previous controllability results by Olbrot 

A.W (1972). Klamka .J (2004) in his research paper on Constrained Controllability of Semi 

linear Systems with multiple delays in Control tackled systems of the form 

(ݐ)ݔܣ = (ݐ)ሶݔ                                 + ,ݔ)݂  (ݐ +  ∑ ௝ܤ
௠
௝ୀ଴ ݐ൫ݑ − ℎ௝൯                                   (2.1.9) 

                                Tє[0, ܶ],   T > 0. 

In his work, finite dimensional stationary dynamical control systems described by multiple 

delays in the control are considered using a generalized open mapping theorem; sufficient 

conditions for constrained controllability are established. 

     Onwuatu (1993) also studied delay control systems where he considered the autonomos 

system 

ሶݔ                                  (ݐ) = ∑ + (ݐ)ݔܣ ௝ܤ
௣
௝ୀଵ ݐ)ݔ − ݆) + ∑ ௝ܥ

௠
௝ୀ଴ ݐ)ݑ − ݆)                       (2.2.0) 

                                tє[0,ݐଵ], ݔ(ݐ଴) =  ф(ݐ) 

Here the controllability is assumed to be measurable and bounded on every finite interval. 

The form of the optimal control is given and the criteria for uniqueness established. 

   More work on delay control systems can also be found in Nse (2007) and Nse (2007) where 

he dwelled on the minimum energy of a linear discrete neutral system with delayed control 

and the constrained controllability of infinite dimensional systems with single point delay in 

control respectively. On the latter he described the system of the form 

ሶݔ                                  (ݐ) = (ݐ)ݔܣ +  ݂൫(ݐ)ݔ൯ + ܤ଴(ݐ)ݑ + ݐ)ݑଵܤ  − ℎ)                        (2.2.1). 

for tє[0,T], T > h  with zero initial conditions (0)ݔ = (ݐ)ݑ   ,0 = 0 .For tє[-h,0], with  x and u 

taking values in a real Banach space. It should be mentioned that, the above system is semi-

linear. 

      Still on delay controls, Nse (2007) exploited necessary and sufficient conditions for the 

constrained relative controllability of semi linear dynamical neutral systems with multiple 

delays in state and control given by the system 

                   
ௗ

ௗ௧
ݐ)ݔ] − ℎ)] =  ∑ ݐ)ݔ௜ܣ − ℎ௜)௠

௜ୀ଴ + ݂൫(ݐ)ݔ൯ +  ∑ ௜ܤ
௡
௜ୀ଴ ݐ)ݑ − ℎ௜)              (2.2.2) 

It is proved that under suitable assumptions, constrained local relative controllability of linear 

associate, approximate dynamical systems implies local relative controllability near the origin 

of the original semi linear abstract dynamical system. 

In their study on the controllability of the economic growth of third world countries, 

Iheagwam and Nse (2007) modeled the economic growth of third world countries as a 

dynamics of growth of capital endowment stock. The dynamics turned out to be a 
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mathematical control problem with delays which is solved to provide broad guidelines in the 

growth of the economies of the third world countries. Their study recommends that 

successive recycling of stock to build up capital until the expected target of economic well 

being is attained. A cartel is needed for the supervision of this growth, from the initial 

endowment, ݔ଴, to the desired capital stock, ݔଵ. They established controllability results for 

these dynamics and the desired game strategy for winning, as the dynamics are viewed as 

differential games of pursuits, remarkably reinforce each other in providing broad policy 

guidelines for revamping the economy of the third world nations 

   On the criteria of an attainable set of a Discrete Neutral Control System, Onwuatu (2002) 

dwelled on the system 

                        
ௗ

ௗ௧
(ݐ)ݔ] − ݐ)ݔܣ − ℎ)] = ∑ ݐ)௜ܣ − ݅ℎ)ே

௜ୀ଴  + ∑ ݐ)ݑ௜ܤ − ݅ℎ)ே
௜ୀ଴                  (2.2.3). 

His results are investigated in the function space ଶܹxܮଶ of a linear neutral system with 

commensurate delays in state and control. Necessary and sufficient algebraic criteria 

expressed in terms of the system matrices for the closeness are derived. 

 2.2 Controllability of Ordinary Differential Systems 

 Controllability of systems with ordinary free part has been a subject of intense 

research as a result of their wide applications in industry, commerce and engineering.   

More so, such systems are easy to handle as tools necessary for their study are now readily 

available. (See Asuquo and Usah (2008), Cheban (2000)). Systems with delay in the 

control, however pose the obvious challenge of how to handle the lags in the control and 

provided multiple interests on the subject of controllability.  They have diversified current 

thinking to accommodate the configuration of the complete state z(t) = {(ݐ)ݔ,  ௧} as it isݑ

transferred from the initial complete state to final state with the pair ((ݐ)ݔ,  ௧) changingݑ

values simultaneously to open up the area of study known as absolute  controllability. See 

Iheagwam and Onwuatu (2005) ,while the spontaneous interest on the transfer of the 

system at (ݔ଴, ௧బݑ
) from initial time ݐ଴, to the state ݔ(ݐଵ) at time ݐଵ using any control gives 

impetus to the subject of relative controllability Iheagwam and Onwuatu (2005) .Sebakhy 

and Bayoumi (1973) blazed the trail by considering a finite set of first order differential 

equations of the form: 

ሶݔ                                (t)  = A(t)x(t) + B(t) u(t) +  C(t) u(t-h)                                             (2.2.4) 

where A(t), B(t)  and C(t) are nxn, nxm, nxm matrices respectively and  h>0  is the delay 

time.  They have obtained a rank condition for the controllability of the system which is 
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                   rank [ B,AB, ܣଶB,..., ܣ௡ିଵB, C, AC, ܣଶC, …, ܣ௡ିଵC ] =  n                       (2.2.5). 

This result has since been extended to systems with multiple delays, (see Nse (2007)), 

research is still scanty on the controllability of the linear systems and its perturbation.  It is 

the investigation of the controllability of the linear systems and its perturbation that was done 

by Iheagwam and Onwuatu (2005) and non linear system using Schauders fixed point 

theorem. 

2.3 Computable Criterion for Controllability. 

 Success in life revolves around the setting of targets and the achievement of same.  

Controllability presumes a predetermined target and effort is geared toward the selection of 

initial points and control energy that will steer the state of system at the initial point to a 

terminal point (desired) in finite time.  The set of such initial points is called the core of 

target denoted by Co (H), while the set of terminal points form the target set, denoted by H. 

 In any admission policy, the academic requirements for admission describe the case 

for the award of programme certificate which is the target.  Initial grants, initial capital 

investment, all constitute core of their various targets. 

 The determination of core of targets and their properties are important to 

administrators, business managers, public and civil servants, and government in realizing 

their objective with minimum waste.  The advantage perhaps underscores the growing 

importance in recent times of the subject of cores of targets and controllability of differential 

systems. 

 Efforts have been made by Hajek (1974) and Chukwu (1986) to investigate the 

compactness of core of targets for linear and non linear ordinary control systems 

respectively.   

Hajek (1974) exploited the analyticity of the fundamental matrix of the homogenous 

differential system 
                  

ሶ  ݔ                                                       (2.2.6)                                                                          ݔܣ =

and buttressed by a weak compactness argument was able to establish the closedness of core 

of targets for the ordinary control system 

ሶ  ݔ                                                     Bu (t)                                                          (2.2.7) + (t)ݔܣ =

 where A and B are constant matrices.  Employing arguments from convex set theory Hajek 

not only proved the convexity of cores of targets but established their boundedness, hence 

resolving the problem of compactness of cores for system (2.3).  Chukwu carried the result of 
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Hajek to nonlinear systems.  Chukwu (1987) in his paper extended with same modifications 

the results of Hajek, to delay systems.  He used the concept of asymptotic direction and 

Hajek-like arguments to establish that a strong relationship exists between the compactness of 

cores of targets for a linear delay system and controllability of a related system.  Iheagwam 

(2002) most recently has extended most results in Hajek (1974) and Chukwu (1987) to 

systems with distributed delays in control, establishing among others a strong relationship 

between cores of targets and the relative controllability of the system of interest. 

2.4 Controllability of Non Linear Systems 

 Several authors have studied the controllability of non-linear systems with the aid of 

Schauders fixed point theorem, in recent years. (See Chukwu (1986), Chukwu (1992)), 

Klamka (1976) and Wei (1976). Especially in the paper by Klamka (1976) the problem of 

global relative controllability of certain class of non linear systems with distributed delays in 

control has been considered.  

 Jerzy Klamka (1980) extended the results of the papers Wei (1976) by considering a more 

general class of nonlinear time-varying systems with distributed delays in control, using 

Schauder’s fixed point theorem, sufficient conditions for global and local relative 

controllability are defined. 

2.5 Relative Controllability of Non linear Neutral Systems 

  The primary motivation for the study of neutral integrodifferential equations is the 

application to transmission-line theory (see Balachandran and Dauer (1996)) .It is known 

that the mixed initial-boundary hyperbolic partial differential equation which arises in the 

study of lossless transmission lines can be replaced by an associated neutral differential 

equation.  The equivalence has been the bases of a number of investigations of the stability 

properties of distributed network (see Conner (1978)) .In particular, models for systems with 

delay in control occur in population studies and in some complex economic systems.  More 

specifically, models for systems with distributed delays in the control occur in the study of 

agricultural economic and population dynamics.    

 Volterra Integrodifferential equations occur in applied Mathematics (see Burton 

(1983)). In Gyori and Wu (1991) a simplified model for compartmental systems with pipes 

is represented by nonlinear neutral volterra integrodifferential equation. The problem of 

controllability of linear neutral systems has been investigated by several authors-(see 

Balachandran and Sakthivel (1999), Fu (2003), Chukwu (1982), Balachandran and 
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Leelamani (2006), Underwood and Chukwu(1988) studied the null controllability for such 

systems. 

 Further, Chukwu (1987) considered the Euclidean controllability of a neutral system 

with nonlinear base.  

 Onwuatu (1984) discussed the problem for nonlinear systems of neutral functional 

differential equations with limited controls.  Gahl (1978) derived a set of sufficient 

conditions for the controllability of nonlinear neutral systems through the fixed point method.   

Balachandran and Dauer (1989) investigated the relative controllability of nonlinear 

systems with distributed delays in control.  In their paper (see Balachandran and Dauer 

(1996)), Balanchandran and Dauer derived sufficient conditions for the relative 

controllability of nonlinear neutral Volterra Integro-differential systems with distributed 

delays in the control variables.  The results were obtained by using Schauder’s fixed point 

theorem. 

2.6 Null Controllability of Functional Differential Systems. 

 The concept of controllability plays a major role in finite-dimensional control theory, 

so it is natural to try to generalize this to INFINITE-dimensional systems.  Balachandran 

and Leelamani (2006), Controllability is the property of being able to steer between two 

arbitrary points in the state space.  For continuous time-invariant linear systems in finite-

dimensional space, the concepts of controllability and reachability have been studied in the 

literature.  A weaker condition than exact controllability is the property of being able to steer 

all points to the origin. This has important connections with the concept of stabilizability. 

Several authors have studied the null controllability of various kinds of dynamical systems. 

(see Chukwu (2001)). Neutral differential equations arise in many areas of applied 

mathematics and such equations have received much attention in recent years.  The theory of 

functional differential equations with unbounded delay has been studied by several authors 

(see Balachandran and Anandhi (2003)). Almost all the work deals with the Cauchy 

problem, 

,ݐ)݂  =  (ݐ)ሶݔ                                ଴ = ф                                                          (2.2.8)ݔ ,௧) ,   t > δݔ

where ݔ௧ represents the “history” of x at t, the values x(t) belong to same finite-dimensional 

space, and f is a function, usually continuous on appropriate spaces.  Nevertheless, this class 

of equations does not include partial integrodifferential equations with infinite delay, which 

arise, for example, in the study of conduction in materials with memory of population 

dynamics for spatially distributed populations.  Besides, it is well known that the behavior of 
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the first and second order abstract Cauchy problems is different in many aspects.  For these 

reasons, there has been an increasing interest in studying equations that can be described in 

the form: 

,ݐ)݂ +  Ax(t) =  (ݐ)ሶݔ                                      ௧), t ≥ δ                                                       (2.2.9)ݔ

where A is the infinitesimal generator of strongly continuous semi-group of linear operators 

on a Banach space X.  We call these equations as abstract retarded functional differential 

equations. 

 Similarly, there exists an extensive theory for ordinary neutral functional differential 

equations, which includes qualitative behavior of classes of such equations and applications 

to biological and engineering processes.  Balachandran and Leelamani (2006) in their 

paper, studied the controllability of the equations that can be modeled in the form: 

                                    
ௗ

ௗ௧
[ x(t) + ݂(ݐ, ,ݐ)௧) ]    =  A x(t) + Gݔ  ௧)                                    (2.3.0)ݔ

where the initial condition  xδ and f and G are appropriate functions.  These functions will be 

called abstract neutral functional differential equations with unbounded delay. As a 

motivation example for this class of equations they considered the boundary value problem.  

డ

డ௧
[u(t, ξ ) + ׬ ׬ ܾ

గ
଴

ݏ) − ,ݐ ,ߟ ,ݏ)ݑ( ߦ ݏ݀(ߟ
௧

ିஶ ] =  
డమ

డక
u(t, ξ ) +  ܽ଴(ξ)u(t, ξ) + ܽଵ(t, ξ)  

׬ +                                                                           ݏ)ܽ − ௧(ݐ
ିஶ u(s, ξ )ds ; 

  t > 0      ,    θ < ξ  < π. 

u(t, 0)  = u(t, π) = 0,    t > 0 

u (θ ,ξ )  = Ф(θ, ξ ),   θ < 0,   0 < ξ ≤ π                                                                              (2.3.1) 

where the functions ܽ଴, ܽ, ܽଵ, ܾ , and ф satisfy appropriate conditions.   

 These problems arise from control systems described by abstract retarded functional 

differential equations with a feedback control governed by a proportional integro-differential 

system (see Ananjevskii and Kolmanovskii (1990)).  On the other hand, some abstract 

retarded functional differential equations can be conveniently transformed into abstract 

neutral functional differential equations.  Consider the equation or the system (2.2.9) with   

                                        F (ψ) = ׬ ଴(ߠ)ܥ
ିஶ ψ(θ)dθ                                                            (2.3.2) 

               where C is a strongly continuous map of continuous operators from X into   X.   

Assume that we can decompose    C(s)   = L(s) + N(s) 

where L and N are also strongly continuous maps of continuous operators and further the L(s) 

are linear.  We define the operator V(t)      by      
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ݔ(ݐ)ܸ = ׬ ݏ݀ݔ(ݏ)ܮ
௧

଴                                                                               (2.3.3) 

Then systems (2.2.9) can be transformed into an abstract neutral functional differential 

equation 

           
ࢊ

࢚ࢊ
[x(t) +׬ ݐ)ܸ − ݏ݀(ݏ)ݔ(ݏ

௧
ିஶ  ]= Ax(t) + ׬ ݐ)ܰ − ݏ݀(ݏ)ݔ(ݏ

௧
ିஶ                              (2.3.4) 

Which has the form (2.3.0) and in some cases depending on V and N, it is easier to treat than 

the original equation.  Motivation for neutral functional differential equations can be found in 

Balachandran and Dauer (1996), Chukwu (2001). 

 There are several papers which have appeared on the controllability of non linear 

systems in infinite-dimensional spaces.  Balachandran and Anandhi (2003) discussed the 

controllability of neutral functional integro-differential systems in abstract phase space, with 

the help of Schauder’s fixed point theorem. 

 Recently, Fu and Ezzinbi (2003), Fu (2004) studied the same problem in abstract 

phase space for neutral functional differential systems and nonlinear neutral systems with 

unbounded delay by utilizing the Sadovskii fixed point theorem.  Balachandran and 

Leelamani (2006) in their paper studied the null controllability of neutral evolution 

integrodifferential systems with infinite delay in utilizing the technique of Fu (2004). The 

results are generalizations of the results established by Fu (2003, 2004). 

     We shall ,therefore, forge ahead in this work to employ modern techniques of approach to 

obtain results and ultimately employ some fixed point theorems to obtain “Mild” solutions of 

Nonlinear Neutral Differential equations in Banach Spaces. 
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CHAPTER 3: 

METHODOLOGY 
3.1. Introduction 

        The pioneering work of Vito Volterra on the Integration of the differential equations of 

dynamics and partial differential dynamical systems published in 1884 gave vent to the 

conception of integral equation of volterra type (see Robertson and Oconnor (2005)). It is 

equally observed in Balachandran and Dauer (1989) that the mixed initial boundary 

hyperbolic partial differential equation which arises in the study of lossless transmission lines 

can be replaced by an associated neutral differential equation. This equivalence has been the 

basis of a number of investigations of the stability properties of distributed network (see 

Balachandran, Dauer and Balasubramaniam (1997)), which study has been extended to 

compartmental models governed by neutral volterra integro-differential equations. 

Compartmental models have been found in Burton (1983) to have numerous applications in 

Applied Mathematics; these models are used to vividly describe the evolutions of systems, in 

theoretical epidemiology, physiology, population dynamics chemical reaction kinetics and 

the analysis of ecosystems (see Gyori and Wu (1991)).  Most of these models can be divided 

into separate compartments. A paradigm for such systems can be seen as one in which 

compartments are connected by pipes through which materials pass in definite time. An 

example of compartmental model is given in Gyori and Wu (1991) as the radio cardiogram 

where the two compartments correspond to the left and right ventricles of the heart and the 

pipe between these compartments represent the pulmonary and systemic circulations. Other 

applications of volterra integro-differential equation arise in tracer kinetics in the modeling of 

uptake of potassium by red blood cells as well as in modeling the kinetic of lead in a body 

(see Burton (1983), Gyori and Wu (1991)). The wide application of volterra integro-

differential equations in Bio-Mathematics and economic models underscores the immense 

interest the study has generated. Literature on the relative controllability of volterra equations 

is still scanty. However, sufficient conditions for the relative controllability of non-linear 

neutral volterra integro-differential equations have been provided in Balachandran and 

Dauer (1989). However, the systems with delays in the state, investigation into their relative 

controllability are still attracting attention and interest. Optimality conditions for the relative 

controllability of neutral volterra integro-differential equation, is yet to be reported; though 

there are studies in the optimal controllability of ordinary and functional differential systems. 
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From these studies, Chukwu (1988), Hmanmed (1986), Klamka (1976), we gain clarity of 

meaning and understanding of the conceptual frame work of optimal controllability. 

In this work, we shall consider the neutral Volterra integro-differential equation of the form 

ௗ

ௗ௧
ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ = (ݐ)ݔ(ݐ)ܣ + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ
௧

଴  

                                                                + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                         (3.1.1) 

with the main objective of investigating the existence and uniqueness of the optimal control 

for the system (3.1.1).  

3.2. Description of System. 

 Consider the neutral Volterra integro-differential system with distributed delays in  

the control given by system (3.1) with the initial condition (0)ݔ =  ଴ݔ

. ,݁ݎ݁ܪ ௡ܧ߳ݔ   and u is an admissible square integrable  m-dimensional vector function; with  

หݑ௝ห ≤ 1,      j =  1,2,0 … , m. H(t, θ) is an nxm matrix continuous at t and of bounded variation 

in θ  on [ -h, 0]; h > 0 for each 0]߳ݐ, ,[ଵݐ ଵݐ > 0.  ܶℎ݁ ݊(ݐ)ܣ ݏ݁ܿ݅ݎݐܽ݉ ݊ݔ, ,ݐ)ܥ ,(ݏ ,ݐ)ܩ  are (ݏ

continuous in their arguments.  The n-vector function g is absolutely continuous.  

 The integral is in the Lebesgue-stieltjes sense and is denoted by ݐℎ݁ ݈݋ܾ݉ݕݏ ݀ఏ . 

In this work, the state space denoted by Q is the Banach space of continuous EnxEm valued 

functions defined on [0, :[ଵݐ ଵݐ > 0 with the norm 

                                                      || (x, u) || =  ||x|| + ||u||    ,             

   where ||x|| =  sup {  | x(t) | ∶ ,0]߳ݐ ‖ݑ‖  ݀݊ܽ  {[ଵݐ =  sup {  | u(t) | ∶   t є[0,    .{[ଵݐ

ܶℎܽݏ݅ ݐ ܳ =  E୬[0, ,௠[0ܧݔ[ଵݐ ,௡[0ܥ  ݁ݎℎ݁ݓ [ଵݐ  -ଵ] is the Banach space of continuous Enݐ

valued functions defined on 0] ݊݋,   .݉ݎ݋݊ ݉ݑ݉݁ݎ݌ݑݏ ℎ݁ݐ ℎݐ݅ݓ[ଵݐ

The control space will be the Lebesgue space of square integrable functions, 

,ଶ([0ܮ  ,[ଵݐ  ௠), where m is a positive integer.  The constraint control set U is closed andܧ

bounded subset of  L2. 

Let, h > 0, be given.  ݑ  ݊݋݅ݐܿ݊ݑ݂ ܽ ݎ݋ܨ: [−ℎ, [଴ݐ → ,0]߳ݐ ݀݊ܽ ௠ܧ      ,[ଵݐ

௧ݑ ݈݋ܾ݉ݕݏ ℎ݁ݐ ݁ݏݑ ݁ݓ   to denote  the function defined on the delay interval [-h ,0] by        

(ݏ)௧ݑ                                                        = ݐ)ݑ + , (ݏ ,ℎ−]߳ݏ  ݎ݋݂ 0].    

3.3 .Variation of Constant Formula. 

By integrating the system (3.1.1), we obtain an expression for the solution as in    

  Balachandran, K. and Dauer, J.P (1989).                                   

(ݐ)ݔ      = ,ݐ)ܺ (0)ݔ](0 − ݃(0) +  (ݐ)݃
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                                    − ׬ ቂ
డ

డ௧
ቃ ,ݐ)ܺ ݏ݀(ݏ)݃(ݏ + ׬ ,ݐ)ܺ ׬](ݏ ݀ఏݏ)ܪ, ݐ)ݑ(ߠ + ݏ݀[(ݏ

଴
ି௛

௧
଴

௧
଴     (3.1.2) 

where x(0) is the state vector at  t = 0. 

,ݐ)ܺ ݀݊ܽ(ݏ ቂ
డ

డ௧
ቃ ,ݐ)ܺ    ݃݊݅ݕ݂ݏ݅ݐܽݏ ݏ݁ܿ݅ݎݐܽ݉ ݏݑ݋ݑ݊݅ݐ݊݋ܿ ݁ݎܽ(ݏ

 [  ቂ డ

డ௧
ቃ ,ݐ)ܺ (ݏ − ׬ ቂ  డ

డ௧
 ቃ

௧
଴ ,ݐ)ܺ ,ݎ)ܥ(ݎ ݎ݀(ݏ + ,ݐ)ܥ (ݏ − ,ݐ)ܺ (ݐ)ܣ(ݏ − ׬ X(t , r) G(r , s)dr

௧
଴     

       where  X(t ,t)  = I   (the identity matrix).    That is, X(t, s) is the fundamental matrix for 

the homogenous part of the system (3.1.1). 

A careful observation of the solution of the system (3.1.1) given as (3.1.2) shows that the 

values of the control u(t) for  t є[-h, ݐ଴] enter the definition of the complete state thereby 

creating the need for an explicit variation of constant formula.  The control in the last term of  

 the formula (3.1.2), therefore, has to be separated in the intervals [-h, 0] and  [0,  ଵ] .  Toݐ

achieve this, that term has to be transformed by applying the method of Klamka in Klamka 

(1980) Finally, we interchange the order of integration using the unsymmetric Fubini’s 

theorem to have. 

(ݐ)ݔ  = ,ݐ)ܺ (0)ݔ](0 − ݃(0) +  (ݐ)݃

  − ׬ ቂ
డ

డ௧
ቃ ,ݐ)ܺ ݏ݀(ݏ)݃(ݏ + ׬ ׬] ݀ఏݏ)ܪ, (ߠ ׬ ,ݐ)ܺ ݏ)ܪ(ݏ − ,ߠ (ߠ

௧ାఏ
଴ାఏ ݏ݀[(ݏ)ݑ

଴
ି௛

௧
଴

௧
଴            (3.1.3) 

Simplifying (3.1.3), we have 

x(t) = X(t ,0)[ x(0) – g(0) ] + g(t) − ׬ ( డ

డ௧
 ) X(t, s)g(s)ds 

௧
଴     

            + ׬ dH஘ ׬  X(t , s − θ)H(s − θ, θ)ݑ଴(s)ds
୲ା஘

஘
଴

ି௛   

            + ׬ dH஘ ׬  X(t , s − θ)H(s − θ, θ)ݑ(s)ds
୲ା஘

஘
଴

ି௛                                                    (3.1.4). 

Using again the unsymmetric Fubini’s theorem on the change of order of integration and 

incorporating H* as defined below 

                         H(s, θ) for s ≤ t  

  H*(s ,θ) =                                                                                (3.1.5) 

                            0        for s ≥ t 

The formula (3.1.4) becomes 

x(t) = X(t ,0)[ x(0) – g(0) ] + g(t) − ׬ ( డ

డ௧
 ) X(t, s)g(s)ds 

௧
଴  +    

׬                                                    dH஘ ׬  X(t , s − θ)H(s − θ, θ)ݑ଴(s)ds
୲ା஘

஘
଴

ି௛   

                                + ׬ ቂ׬ X(t , s − θ)dθH ∗ ( s − θ, θ) u(s) ds
଴

ି௛  ቃ
௧

଴                                (3.1.6) 

         Integration is still in the Lebesgue Stieltjes sense in the variable θ in H 
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For brevity, let 

       β (t)  =   X(t ,0)ൣ x(0)–  g(0)൧ + g(t)  − ׬ ( 
డ

డ௧
 ) X(t, s)g(s)ds 

௧
଴                      (3.1.7).  

     μ(ݐ) = ׬ dH஘ ׬  X(t , s − θ)H(s − θ, θ)ݑ଴(s)ds
୲ା஘

஘
଴

ି௛                                                   (3.1.8) 

,ݐ)ݖ          (ݏ = ׬ X(t , s − θ)dθH ∗ ( s − θ, θ) 
଴

ି௛                                                               (3.1.9).                  
     

Substituting (3.1.7), (3.1.8), and (3.1.9) in (3.1.6), we have a precise variation of formula for 

the system (3.1.1) as 

,ݐ)ݔ                                     ,଴ݔ (ݑ = (ݐ)ߚ + (ݐ)ߤ + ׬ ,ݐ)ݖ ݏ݀(ݏ)ݑ(ݏ
௧

଴                               (3.2.0) 

 
3.4.THE FOLLOWING METHODS/TECHNIQUES WERE USED TO 

OBTAIN RESULTS: 

  
3.4.1.Relative Controllability Technique. 

           It is known from Onwuatu (1993) that, if the system relatively controllable, then 

optimal control is unique and bang-bang. In the light of this, we shall consider the Neutral 

Volterra Integrodifferential Equation of the form 

ௗ

ௗ௧
ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ =    (ݐ)ݔ(ݐ)ܣ

                                                       + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛
௧

଴            (1.1.7) 

with initial condition ݔ(ݐ଴) = ,   ଴ݔ  where xϵE୬ is the state space and ܧ߳ݑ௠  is the control 

function, H(t ,θ) is an nxm matrix continuous at t and of bounded variation in θ on [-h,0]; 

h>0 for each tє[t0,t1] ; t1 > t0 .The nxn matrices (ݐ)ܣ, ,ݐ)ܥ ,(ݏ ,ݐ)ܩ  are continuous in their (ݏ

arguments. The n-vector function g is absolutely continuous. 

      The above system will be investigated for existence and uniqueness of optimal control 

by first of all considering the relative controllability of the system. 

3.4.2.TheEnergy Method of Alexander Mikhailovick 

Lyapunov(1829) 

                We shall then forge ahead to achieve solution near the origin to another 

Neutral Functional Differential Equation of the form 

              
ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ݐ)ݔ(ݐ)ܣ + ߠ݀(ߠ

଴
ିஶ                        (1.1.8). 

, ݁ݎℎ݁ݓ ,ݐ)ܮ (௧ݔ = ∑ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ + ׬  ,ݐ)ܣ ݐ)ݔ(ߠ + ߠ݀(ߠ

଴
ି ஶ                              (1.1.9) 
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is a bounded linear operator, and ݂(ݐ,  ௧) is a perturbation function. The nxn matrixݔ

functions Ak and A(t ,θ) are measurable  in (t, s) є ExE,  θ є [-∞,0). 

The energy method of Alexander Mikhailovick Lyapunov (1829) which stipulates that, in a 
stable system, the total energy in the system will be a minimum at the equilibrium point 
will be used to establish results. 

3.5. Basic Set Functions and Properties 

Applications will be made of the following Basic Set Functions and Properties upon 

which our study hinges: Reachable Set, Attainable Set, Target Set , Controllability Grammian 

and Controllability Index of the System (3.1.1). 

3.6.      Controllability Conditions or Controllability Standard 

Applications will be made of the following controllability conditions to establish results: 

1. The non-emptiness of the intersection of two set functions- attainable set ࢚)࡭૙,  ૚), and࢚

target set  ࢚)ࡳ૙,    .૚) is equivalent to the controllability of the system࢚

 ܶℎܽݏ݅ ݐ, ,଴ݐ)ܣ (ଵݐ ∩ ,଴ݐ)ܩ  (ଵݐ ≠ ф,   implies that the system is controllable. 

2. The controllability Grammian or Map ݐ)ܹ  ࢖ࢇ࢓ ࢘࢕଴,  ଵ) is invertible and the invertibilityݐ

of the grammian guarantees the controllability of the system. The invertibility of the 

grammian means that the rank of the grammian must be equal to n. 

ܶℎܽݏ݅ ݐ , ,଴ݐ)ܹ (ଵݐ = ݇݊ܽݎ ׬ [ܺିଵ(ݏ)(ݏ)ܤ][ܺିଵ(ݏ)(ݏ)ܤ]்݀ݏ =
௧భ

௧బ
݊, ,଴ݐ]߳ݐ ݎ݋݂ ,[ଵݐ ଵݐ >   ,଴ݐ

3. R.E. Kalmans’ Controllability Criterion (theorem) .Consider the system given by 

ሶݔ                                                        (ݐ) = (ݐ)ݔܣ +                   , (ݐ)ݑܤ

,ܣ ݁ݎℎ݁ݓ ,݊ݔ݊ ݐ݊ܽݐݏ݊݋ܿ ݁ݎܽ ܤ   Then, the system is proper if and only if.ݏ݁ܿ݅ݎݐܽ݉ ݉ݔ݊

,ܤ]݇݊ܽݎ                                              ,ܤܣ ,ܤଶܣ … , [ܤ௡ିଵܣ = ݊. 

  ૝.    0߳ݐ)ܴ ݎ݋݅ݎ݁ݐ݊ܫ଴,  .ଵ),    Implies that the system is controllableݐ

 5.        For the time varying systems and dynamical systems of the form 

ሶݔ                                                          (ݐ) = (ݐ)ݔ(ݐ)ܣ +    (ݐ)ݑ(ݐ)ܤ

           is proper if the controllable index z(t) is zero such that c = 0 

, ݏ݅ ݐℎܽݐ                      (ݐ)ݖ = ்ܿܺିଵ(ݐ)(ݐ)ܤ = 0, ⇒ ܿ = 0  

3.6.1.    OPTIMALITY CONTROL 
            Theorem 3.6.1. (Existence of Optimal Control) 

Let g(t) be a continuous target function, and consider the system 
ሶݔ                                                          (ݐ) = (ݐ)ݔ(ݐ)ܣ +     .(ݐ)ݑ(ݐ)ܤ

If there is an admissible control ݑєܥ௠ ଵݐ ݁݉݅ݐ ܽ ݀݊ܽ  ≥ 0 , ,ଵݐ)ݔ  ݎ݋݂ (ݑ =   ,(ଵݐ)݃

then, there is an optimal control. 
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       Theorem3.6.2 (Necessary Condition for Optimality) 

,the minimum time ∗ݐ is an optimal control with∗ݑ ݂ܫ  then  ݑ∗   is of the form    

(ݐ)∗ݑ                 = ,0]݊݋[(ݐ)ܤ(ݐ)ଵି்ܺܿ]݊݃ݏ ܿ݁݉݋ݏ ݎ݋݂[ݐ ≠ 0.      

3.7 .  Bang-Bang Principle 

    Consider the system 

ሶݔ                                                          (ݐ) = (ݐ)ݔܣ +    (ݐ)ݑܤ

ܷ ݐ݁ܮ                                                = :௡ܧєݑ} ‖௝ݑ‖ ≤ 1}                                               (a) 

  be a set  of admissible controls with limited energy and, 

଴ܷ ݐ݁ܮ                                                = :௡ܧ଴єݑ } ∥ ௝ݑ
଴ ∥= 1 }                                        (b)     

 be a set  of admissible controls with unlimited energy (Bang-Bang Control). 

Using the control set (a), we have the reachable set as 

,଴ݐ)ܴ                                                   (ଵݐ = ׬} ܺିଵ(ݏ)௧భ

௧బ
:ݏ݀(ݏ)ݑ(ݏ)ܤ  .{ єܷݑ

If we use the second control set (b), we have the reachable set as 

ܴ૙(ݐ଴, (ଵݐ = {න ܺିଵ(ݏ)
௧భ

௧బ

:ݏ݀(ݏ)଴ݑ(ݏ)ܤ  { ଴єܷ଴ݑ

The Bang- Bang Principle simple states that    ܴ(ݐ଴, (ଵݐ = ܴ଴(ݐ଴,   .ݐ ℎܿܽ݁ ݎ݋݂ (ଵݐ

,଴ݐ)ܴ (ଵݐ = ܴ଴(ݐ଴,  .ݐ ℎܿܽ݁ ݎ݋݂ (ଵݐ

The interpretation is that any point that can be reached by an admissible control u at any time 

t can be reached by a bang-bang control ݑ଴ ܽݐ ݐℎ݁ ݁݉݅ݐ ݁݉ܽݏ. 

3.8.    Control Theorem on Nonlinear Systems 

              Theorem 3.8.1 

           Consider the system,     ݔሶ (ݐ) = (ݐ)ݔܣ + (ݐ)ݑܤ + ,ݐ)݂  ,ݔ    (ݑ

, ݁ݎℎ݁ݓ  (ݐ)ݔܣ + ,ݐ)݂ is the linear part and (ݐ)ݑܤ ,ݔ      .is the perturbation function(ݑ

If the linear part is controllable and the perturbation is bounded, then the nonlinear system is 

controllable. 

3.9.   Lyapunov Stability Theorems for Autonomous Systems 

               Consider the system 

ሶݔ                               = , (ݔ)݂ ݂(0) = 0                                                          (1.2.4) 

:݂ ݁ݎℎ݁ݓ ܦ → ܴ௡ ݅ݏݑ݋ݑ݊݅ݐ݊݋ܿ ݏ,    ௡ defined byܴ ݂݋ ݐ݁ݏܾݑݏ ܽ ݏ݅ ܦ

ܦ                                     = :єܴ௡ݔ} ∥ ݔ ∥≤  .{ݎ

The solutions of the system (1.2.4) are uniquely stable for given initial 
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,଴ݐ ܽݐܽ݀  |଴ݐ| <   .ܦ߳ݔ ݀݊ܽ ∞

Here, we shall be concerned with the stability of the trivial solution. 

         Theorem 3.9.1. (Lyapunov Stability Results) 
Let V: D→R be a Lyapunov function for the system(1.2.4) on D. Then: 

(i) (݅)   ݂ܫ     ሶܸ  is negative semi-definite, then the trivial solution of the system  (ݔ)
(1.2.4) is stable. 

(ii) (݅݅).  ݂ܫ        ሶܸ  is negative definite, then the trivial solution of the system (1.2.4) is  (ݔ)
asymptotically stable. 

(iii) if       ሶܸ    is positive definite, then the trivial solution of the system (1.2.4) is  (ݔ)
unstable. 

3.10.        Existence Theorems 

Theorem 3.10.1. (Schauder’s Fixed Point Theorem) 

            If A is a closed, bounded and convex subset of a Banach space B  

and if the map T: A → A    is completely continuous, then there is a point   zєA such that  

 T( z )   = z, that is ;  z   is a fixed point  

  Theorem 3.10.2 (Schaefer’s fixed point theorem),  

         Let B be a normed linear space.  Let g: B → B      be completely continuous operator, 

that is, it is continuous and image of any bounded subset is contained in a compact set, and  

let Qg = {x є B: x = λgx     ,for    λ є (0, 1), that is, 0 < λ < 1},then either Qg is unbounded or 

g has a fixed point. 
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CHAPTER 4 

MAIN RESULTS 

  Preamble. 

              In this chapter, we consider the main results. 

  We recall here that our system of investigation is given by 

݀
ݐ݀

ቈ(ݐ)ݔ − න ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − (ݐ)݃
௧

଴
቉ = (ݐ)ݔ(ݐ)ܣ + න ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ

௧

଴
 

                                                                + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                         (4.1.1) 

with initial condition ݔ(ݐ଴) = ݔ଴   ,where xєܧ௡  is the state space and u єܧ௠  is the control 

function, H(t ,θ) is an nxm matrix continuous at t and of bounded variation in θ on [-h,0]; 

h>0 for each tє[t0,t1] ; t1 > t0 .The nxn matrices ݐ)ܥ, (ݐ)ܣ, ,ݐ)ܩ,(ݏ  are continuous in (ݏ

their arguments. The n-vector function g is absolutely continuous. 

4.1.   Relative Controllability Results  

 We now state and prove the following theorems that guarantee relative controllability 

of the system under study  

Theorem 4.1 (Relative controllability Result) 

Consider the system 

    
ௗ

ௗ௧
ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ = (ݐ)ݔ(ݐ)ܣ + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ
௧

଴  

                                                                + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                                    (4.1.1)                    

with the same conditions on the systems parameters as in (4.1.1), then the following 

statements are equivalent: 

(1)  The system (4.1.1) is relatively controllable on   [ 0 ,  tଵ] 

(2) The controllability grammian W (0, 1ݐ) of system (4.1.1) is non-singular. 

(3) The system (4.1.1) is proper on   [0, tଵ].  

 Proof.     

Straight forward from the arguments in; Ananjevskii and Kolmanovskii (1990), Angell 

(1990), Balachandran and Dauer (2002). 

Theorem 4.2 (Relative controllability Result) 

  The system (4.1.1) with its standing hypothesis is relatively controllable if and only if  

0 є Int R ( ࢚૚  , 0)    for    ݐଵ  > 0. 
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 Proof  

The reachable set R( ݐଵ,0) is a closed and convex subset (compact subset) of En. 

Therefore, a point ݖଵє En on the boundary implies there is a support plane π of R( ࢚૚, 0) 

through ݖଵ.   

 That is, ்ܿ(z - ݖଵ) ≤ 0   for each z є R ( ࢚૚  , 0), where c ≠ 0 is an outward normal to the 

support plane π. 

 If   ݑଵ  is the control corresponding to ݖଵ,   we have  

               ்ܿ ׬  ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө)
଴

ି௛ ቃ u(s)ds 
௧భ

଴   

                                      ≤  ்ܿ ׬  ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө) ଴
ି௛ ቃ

௧భ

଴  ଵ(s)ds                 (4.1.2)ݑ

  for each u є U. Since U is a unit sphere the inequality (4.1.2) becomes 

                  │ ்ܿ ׬  ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө)  ଴
ି௛ ቃ

௧భ

଴ u(s)ds │ 

         ≤ │ ்ܿ ׬    ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө). 1 ଴
ି௛ ቃ

௧భ

଴  │ds 

 = ்ܿ ׬ ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө). 1 ଴
ି௛ ቃ

௧భ

଴ sgn c୘[׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө)ds ] ଴
ି௛                                                          

                                                                                                                                           (4.1.3) 

Comparing (4.1.2) with (4.1.3), we have 

׬]sign  c୘       = (ݐ)ଵݑ                              X( ݐଵ, s − ө)d஘H∗(s − ө, ө)] ଴
ି௛  

More so, as ݖଵ is on the boundary since we always have 0є R( ࢚૚, 0). 

      If  0  were not in the interior of   R( ࢚૚, 0),  then it is on the boundary. 

Hence from preceding argument it implies that  

                              0   =   ்ܿ ׬  ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө) ଴
ି௛ ቃ

௧భ

଴                   .ݏ݀

 So that         

                               ்ܿ ቂ׬ ,ଵݐ )ܺ ݏ − ө)݀ఏݏ)∗ܪ − ө, ө) ଴
ି௛ ቃ  = 0, almost everywhere ( a.e )     

This, by definition of properness implies that the system is not proper, since   ்ܿ  ≠ 0. 

 However, if 0 є interior R (t, 0)   for     ݐଵ   > 0 

                             ்ܿ ቂ׬ X( ݐଵ, s − ө)d஘H∗(s − ө, ө) ଴
ି௛ ቃ   = 0, implies that   c = 0, 

which is the properness of the system and by the equivalence in theorem 4.1, the relative 

controllability of system (4.1.1) on [ 0,  ݐଵ  ] ;  ݐଵ  > 0   is proved. 
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4.2. OPTIMALITY CONDITIONS FOR THE LINEAR NEUTRAL 

VOLTERRA INTEGRO-DIFFERENTIAL SYSTEMS. 

The optimal control problem can best be understood in the context of a game of 

pursuit (see Balachandran and Dauer (1996), Balachandran and Ananhdi (2003)). The 

emphasis here is the search for a control energy that can steer the state of the system of 

interest to the target set (which can be a moving point function or a compact set function) in 

minimum time. In other words, the optimal control problem is stated as follows: 

If  t* = infimum   { t : A(t ,0) ∩ G(t ,0) ≠ ф  for t є [ 0,  ݐଵ  ] ,   tଵ   > 0 }    , 

then there exists an admissible control u* such that the solution of the system with this 

admissible control is steered to the target. The proposition that follows illustrates this 

assertion. 

Proposition 4.1. 1 

Consider the system (4.1.1) as a differential game of pursuit 

           ௗ

ௗ௧
 ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ = (ݐ)ݔ(ݐ)ܣ + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ
௧

଴  

                                                                                + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛ ,                    

with its basic assumptions. Suppose A(t, 0) and G(t, 0) are compact set functions then there 

exists an admissible control such that the state of the weapon for the pursuit of the target 

satisfies the system (4.1.1) if and only if   

A (t , 0 ) ∩ G (t , 0) ≠ ф. 

    

 Proof 

      Let     { un }     be a sequence in U. Since the constraint control set U is compact, then the 

sequence   { un}  has a limit u, as n tends to infinity. That is, lim
௡→∞

un     =   u 

     Suppose the state z (t) of the weapon for pursuit of the target satisfies the system (4.1.1) 

on the time interval [0,  ݐଵ   ], then z(t) є G( t , 0), for  t є [ 0,  ݐଵ   ]. We are to show that there 

exists x( t ,u ) є A( t ,0 ) ,for t є [ 0,  ݐଵ ]  such that z(t)  = x( t , u  )     

 for some u є U. 

Now x( t, ݔ଴,un ) є A( t ,0 )  and from 

 x( t, ݔ଴,un ) =  X( t,0 )[x(0) – g(0) ] + g(t) –  ׬ [ డ

డ௧
]X(t, s)g(s)ds 

௧
଴   

׬  +                                          dH஘ ׬  X(t, s − ө)H(s − ө, ө)ݑ଴
௡(ݏ)݀ݏ  

଴
ఏ

଴
ି௛    
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׬   +                                        ቂ׬ X(t, s − ө) ݀ఏH∗ (s − ө, ө)
଴

ି௛ ቃ
௧

଴  ௡(s) ds .                     (4.1.4)ݑ 

Taking limit on both sides of (4.1.4), we have 

                   lim௡→ஶ x(t, ,଴ݔ u୬)     = X(t,0)[x(0) – g(0) ] + g(t) –  ׬ [
డ

డ௧
]X(t, s)g(s)ds 

௧
଴   

׬]  +                                                          dH஘ ׬  X(t, s − ө)H(s − ө, ө) ] 
଴

ఏ
଴

ି௛  lim
௡→ஶ

଴ݑ
௡(ݏ)  ݏ݀

׬   +                                        ቂ׬ X(t, s − ө) ݀ఏH∗ (s − ө, ө)
଴

ି௛ ቃ
௧

଴  lim
௡→ஶ

 .[ ଵݐ ,0 ] ௡(s) ds , for t єݑ

                     x( t, ݔ଴,u ) =  X(t,0)[x(0) – g(0) ] + g(t) –  ׬ [ డ

డ௧
]X(t, s)g(s)ds 

௧
଴   

׬  +                                            dHθ ׬  X(t, s − ө)H(s − ө, ө)ݑ଴(ݏ)݀ݏ  
଴

ఏ
଴

ି௛    

׬   +                                    ቂ׬ X(t, s − ө) ݀ఏH∗ (s − ө, ө)
଴

ି௛ ቃ
௧

଴  ,є A( t, 0 ) (଴,uݔ,t) ds     = x (s)ݑ 

since A(t ,0) is compact and lim௡→ஶ x( t, ,଴ݔ u୬)   =   x ( t,ݔ଴,u ). 

Thus, there exists a control u є U such that x(ݐଵ,ݔ଴,u)   =   z(ݐଵ), for ݐଵ> 0. 

Since z(ݐଵ) є G( ࢚૚ ,0 )   and  also, is in A(࢚૚,0), it follows that 

                                     A( t , 0 ) ∩ G( t ,0 )  ≠ ф,              for  t є [ 0,  ݐଵ ]. 

Conversely, 

 Suppose that the intersection condition holds, i.e. A(t ,0) ∩ G(t,0)  ≠ ф, 

 t є [ 0, ݐଵ], then there exists z(t) є A( t ,0)  such that z(t) є G( t ,0 ) .   

This implies that  z(t)  = x (t, ݔ଴,u ) and hence establishes that the state of the weapon of 

pursuit of the target satisfies the system (4.1.1). This completes the proof. 

Remark 4.1: 

 The above stated and proved proposition in other words states that in any game of 

pursuit described by a linear neutral volterra integro-differential equation, it is always 

possible to obtain the control energy function to steer the system state to the target in finite 

time.  The next theorem is, therefore, a consequence of this understanding and provides 

sufficient conditions for the existence of the control that is capable of steering the state of the 

system (4.1.1) to the target set in minimum time. 

4.3. EXISTENCE OF AN OPTIMAL CONTROL.  

 The theorem below shows that the controllability of a system guarantees the existence 

of its optimal control. 
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Theorem (4.2) 

Consider the system (4.1.1), that is, 

             
ௗ

ௗ௧
 ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ = (ݐ)ݔ(ݐ)ܣ + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ
௧

଴  

                                                                          + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                          (4.1.1)             

with its basic assumptions.  

Suppose the system (4.1.1) is relatively controllable on the finite interval [ 0, ݐଵ ] ,then there 

exists an optimal control. 

 Proof 

     By the controllability of the system (4.1.1), the intersection condition holds.  

That is, A(t ,0 ) ∩ G( t ,0 )  ≠ ф. Also,  x ( t, ݔ଴,u ) є G( ݐଵ,0 )  , so    z(ݐଵ)  = x (ݐଵ,ݔ଴, u ). 

Recall that the attainable set A( t , 0 )  is a translation of the reachable set R( t , 0 ) through η 

which is given as 

                           η  =  X( t ,0 )[x(0) – g(0) ] + g(t) –  ׬ [
డ

డ௧
]X(t, s)g(s)ds 

௧
଴   

׬  +                                       dHθ ׬  X(t, s − ө)H(s − ө, ө)ݑ଴(ݏ)݀ݏ .
଴

ఏ
଴

ି௛    

             It follows that      z (t) є R (࢚૚, 0)  for  t є [ 0, ݐଵ] , ݐଵ > 0   and can be defined as 

                             z(t) =       ׬ ቂ݀ܪఏ ׬ X (t, s − θ)dөH∗(s − ө, ө) 
଴

ିு ቃ
௧

଴  u(s)ds . 

Let    t* = infimum { t : z(t) є R( t , 0) ,    t є [ 0 ,ݐଵ ] } . 

Now   ݐଵ ≥ 0  and there is a sequence of times { ݐ௡ }  and corresponding sequence of controls 

{un} U  with { ݐ௡} converging to t* (the minimum time) 

let     z(ݐ௡)  = y(ݐ௡, un) є R(࢚૚,0).  Also 

        │z (t*)  -  y (t*, un ) │ = │z(t*)   -     z(ݐ௡)  +  z(ݐ௡) –  y(t* un, ) │  

                                       ≤ │z(t*)  -  z(ݐ௡)  │ + │z(ݐ௡) – y(t*, un )│      

                                      ≤ │z(t*)  -  z(ݐ௡)  │ +│y(ݐ௡, un)  –  y(t*, un)│         

                                      ≤ │ z(t*)  -     z(ݐ௡)  │  +     ׬   y (s)  ds
௧೙

௧∗ . 

By the continuity of z(t) which follows the continuity of R(t ,0) as a continuous set function 

and the integrability of ║y (t) ║  ,it follows that 

                     y( t* un,) → z( t* )      as      n→∞   , where   z( ݐ∗ ) = y( ݑ ,∗ݐ∗) є R(t , 0 ). 

For some ݑ∗ є U and by definition of ݑ ;∗ݐ∗ is an optimal control. 

 This establishes the existence of an optimal control for the linear neutral volterra integro-

differential equation (4.1.1). 
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4.4. THE FORM OF THE OPTIMAL CONTROL 

 In this section, we shall derive the form of the optimal control of our system of 

interest and express same using the definition of the signum function. 

Definition (signum)                                                            1, x > 0 

The signum function is defined by sgnx =  

                                                                                            -1, x < 0 

Theorem 4.3                                                                        

Consider the linear neutral volterra integro-differential equation given as the system  

                 
ௗ

ௗ௧
 ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − ௧(ݐ)݃

଴ ቃ = (ݐ)ݔ(ݐ)ܣ + ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ
௧

଴  

                                                                               + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛                     (4.1.1)                 

 with its basic assumptions, ݑ∗  is the optimal control energy for system  (4.1.1) if and only if 

 is of the form ∗ݑ

׬ ்ܿ] sgn = (t) ∗ݑ                                X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛  ],    where     c є ܧ௡.  

Proof 

 Suppose, ݑ∗ is the optimal control energy for the system (4.1.1), then it maximizes the 

rate of change of 

                      y (t, u )  =   ׬ X(t, s − ө)d஘H∗(s − ө, ө)u(t) ଴
ି௛

  ,  for u є U;  in the direction of   

c .Since u(t) are admissible controls, that is, they are constrained to lie in a unit sphere, we 

have 

                       ்ܿ ׬  X(t, s − ө)dθH∗(s − ө, ө)u(t) 
଴

ି௛ ׬ ்ܿ│ ≥ X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛  │ 

             ≤  ்ܿ ׬  X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛
 sign[்ܿ ׬  X(t, s − ө)dθH∗(s − ө, ө) 

଴
ି௛ ]        

(4.1.5) 

This inequality follows from the fact that, for any non-zero number v,   then   v ≤ sign v.         

Hence defining 

்ܿ] sgn = ∗ݑ                                ׬ X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛  ]                             (4.1.6), 

The inequality (4.1.5), becomes 

                  ்ܿ ׬  X(t, s − ө)d஘H∗(s − ө, ө)u(t) ଴
ି௛   ≤  ்ܿ ׬ X(t, s − ө)d஘H∗(s − ө, ө) ଴

ି௛   ( t )∗ݑ

This shows that the control that maximizes y(t, u) є R(t, 0)  is of the form 

                               u* = sgn [்ܿ ׬ X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ] . 
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Conversely, 

 Let                 ݑ∗ = sgn[்ܿ ׬ X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ],   then for the controls u єU  

׬ ்ܿ                 ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u(s)ds 
௧

଴
  

׬ ்ܿ ≥                       ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ] 
௧

଴  sgn[்ܿ ׬ X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]ds   

                      ≤   ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө). 1 
଴

ି௛ ] ds
௧

଴  , since for v ≠o, sgn v > 0 

׬ ்ܿ ≥                       ׬] X(t, s − ө)dθH∗(s − ө, ө)ݑ∗( s) 
଴

ି௛ ] ds
௧

଴         .   

This shows that u* maximizes    ׬ ׬] X(t, s − ө)d஘H∗(s − ө, ө) 
଴

ି௛ ]u(s)ds 
௧

଴   

over all admissible controls u є U.  

Hence u* is an optimal control for system (4.1.1).   This completes the proof. 

Remark 4.2 

It is evident from theorem 4.3, that if u* is the optimal control then the target is on the 

boundary of the reachable set. To see this, let 

,∗ݐ) y  =  ∗ݕ  ׬     =   (∗ݑ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]
௧

଴  [ଵݐ,0] є ∗ݐ ds  ; for(s)∗ݑ

 y   =   y (t  , u)   =    ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u(s)ds 
௧

଴    ;  for t є [ 0 , ݐଵ] 

Then, from the result of theorem 4.3  

்ܿy  ≤  ்ܿݏ݈݁݅݌݉݅     ∗ݕ              ்ܿ ( y −ݕ∗ ) ≤ 0,   for y є R(t, 0). 

Since the reachable set R(t , 0) is closed, convex subset of En, there is a support plane π  

of R(t , 0) through c with  c ≠ 0  an outward normal to π at ݕ∗  and hence ݕ∗  is in the 

boundary of the reachable set.  This realization is formalized with the next theorem. 

Theorem 4.4 

 Let ݑ∗ be the optimal control for the system (4.1.1) with ݐ∗ the minimum time, then 

the target   z(ݐ∗) = x( ݔ,∗ݐ଴, ݑ∗) is on the boundary of the attainable set  A(t, 0). 

i.e  z(ݐ∗) є ∂A(t, 0)      . (where ∂ symbolizes boundary); for t, ݐ∗є [0, ݐଵ]. 

Proof 

 Suppose ݑ∗is an optimal control, then x(ݑ,∗ݐ∗) = (η + ݕ∗) є R(t*, 0 ). 

Therefore x(ݑ,∗ݐ∗) є A(0 ,∗࢚). 

Now suppose for contradiction x(t*,ݑ∗) is not on the boundary, then x(ݑ,∗ݐ∗) is in the 

interior of A(0 ,∗࢚ ); ݐ∗є [0, ݐଵ]. 

Therefore there is a ball  B(x(t*,ݑ∗ ), r )   centered at  x(t* , ݑ∗) ,radius  r  in  A(t*,0 ). 
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Because A(t, 0) is a continuous set function of t, we can preserve the above inclusion for t 

near t* . If we reduce the size of the ball  B( x (ݑ,∗ݐ∗) , r ); that is, if there is an ε > 0  such that 

B( x( t* ,ݑ∗) , ௥
ଶ
 ) A(t , 0)  for  t*- є ≤ t ≤ ݐ∗. 

 Thus, x( t*,ݑ∗) є A(t , 0)  for  t*- є ≤ t ≤ ݐ∗.                                                                        

This of course contradicts the optimality of t* and ݑ∗as the optimal control. 

This contradiction however, proves that the target z (t*) is on the boundary of the attainable 

set A( t*,0)  and hence on the boundary of the reachable set R(t*,0) 

Remark 4.3:   

This theorem is the basis of Pontrygin’s Maximum Principle (see Balachandran and 

Dauer (1998)).There are other fascinating properties that emanate from the convexity 

property of the reachable set in Balachandran, Balasubramaniam and Dauer (1995) .It is 

stated that if the reachable set of a system is strictly convex, then the system is said to be 

normal and optimal control for such a system is said to be Bang-Bang. By the Bang-Bang 

principle, any point of the reachable set that can be reached by an admissible control can be 

reached by a Bang-Bang control. Following the arguments in Balachandran, 

Balasubramaniam and Dauer (1995), Chukwu (2001), Balachandran and Anandhi 

(2003), the above results, can easily be proved for the system (4.1.1). 

4.5. UNIQUENESS OF OPTIMAL CONTROL 

Here, a new method of approach is derived for the proof of the existence of optimal control. 

Theorem 4.5 

        Consider the system (4.1.1) with its standing hypothesis.  Suppose ݑ∗is the optimal 

control, then it is unique. 

Proof 

Let  ݑ∗  and ݒ∗  be optimal controls for the system (4.1.1), then ݑ∗ and ݒ∗maximize 

                       ்ܿ ׬ ׬] X(t, s − ө)d஘H∗(s − ө, ө) 
଴

ି௛ ] 
௧

଴ ,   for t є [0, ݐଵ], ݐଵ> 0; 

 over all admissible controls u є U, and so we have the inequality with ݑ∗as the optimal 

control. 

                      ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u(s)ds
௧

଴   

                                                 ≤  ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u∗(s)ds
௧∗

଴             (4.1.7) 

Also, using ݒ∗  as optimal control, we have 
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                     ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u(s)ds
௧

଴   

                                 ≤  ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]v∗(s)ds
௧∗

଴                               

(4.1.8) 

 Taking maximum of u, over [-1, 1], the range of definition of ݑ∗in (4.1.7) and (4.1.8), we 

have the equations 

    ்ܿ ׬ ቂ׬ X(t, s − ө)d஘H∗(s − ө, ө)଴
ି௛ ቃ max. |u(s)|ds

௧
଴  ,   for -1≤ s ≤1 

                     = ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]u∗(s)ds
௧∗

଴  ,        for u, ݑ∗є U                (4.1.9)        

Also ,            

                    ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]
௧

଴ max│u(s)│ds 

                                          =  ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]v∗(s)ds
௧∗

଴                  (4.2.0)                                      

 for u, ݒ∗є U,    ݒ∗ being optimal and  -1≤ s ≤1. 

Subtracting equation (4.19) from equation (4.2.0), we have 

                   0 = ்ܿ ׬ ׬] X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛ ]
௧∗

଴      ds ,        Implies  that{ (s)∗ݒ - (s)∗ݑ }

׬] = 0                   X(t, s − ө)dθH∗(s − ө, ө) 
଴

ି௛            { (s)∗ݒ - (s)∗ݑ }[

 (s)∗ݒ  =  (s)∗ݑ          0, implies that = (s)∗ݒ - (s)∗ݑ                

This establishes the uniqueness of the optimal control for the system (4.1.1). 
 

 

4.6. GLOBAL UNIFORM ASYMPTOTIC STABILITY FOR NONLINEAR INFINITE     

                               NEUTRAL DIFFERENTIAL SYSTEMS 
       Preamble. 

                Consider the system (1.1.8), 

ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

଴
ିஶ : ௧బݔ

= ф. 

                                  (a nonlinear infinite neutral system) 

Consider the system below, 

                ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ   

ஶ
଴                            (4.2.1) 

                       (circularity of the function from -∞ to 0, and from 0 to ∞). 

We can linearize system (4.2.1) as in Chukwu (1992) by setting ݔ௧ = z in L; a specified 

function inside the function ݐ)ܮ,  .௧  with no loss of generalityݔ ௧    to have L(t, z )ݔ(௧ݔ

Thus system (4.2.1) becomes 
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ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ  = [(௧ݔ ௧ݔ(ݖ + ׬ ,ݐ)ܣ ஶ(ߠ

଴ ݐ)ݔ + ఏ݀(ߠ + ,ݐ)݂  ௧)                             (4.2.2)ݔ

 Evidently 

,ݐ)ܮ           ∑ =   ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬ +  ,ݐ)ܣ ଴(ߠ

ିஶ ݐ)ݔ + + ఏ݀(ߠ ׬ ஶ(ݐ)ܣ
଴ ݐ)ݔ + ఏ݀(ߠ     

,ݐ)∗ܮ            ∑   =  ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬  +   A(t, θ) x(t, θ)d஘

ஶ
ିஶ               

The representations ࡸ ,ࡸ∗  are the same under the following assumptions 

,ݐ)ܮ ௧   =  lim௣→ஶݔ(ݖ ∑ ݐ)ݔ௞ܣ − ௞)௣ݓ
௞ୀ଴   +    limெ,ே→ஶ ׬ A(t, ө) x(t + ө)ds

ே
ெ               

We assume the limits exist, giving finite partial sum for the infinite series and the improper 

integrals. Thus the system 

,ݐ)∗ܮ                          ∑   =  ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬  +   A(t, θ) x(t + θ)d஘

ஶ
ିஶ               

is finite and well defined function.  In the light of the above, the system (4.2.1) reduces to 

                                
ௗ

ௗ௧
 [D(t, z )ݔ௧]   =  L(t, z)ݔ௧   +  ݂(ݐ, (଴ݐ)ݔ  ;(௧ݔ = фє C                 (4.2.3) 

where          L(t, z)ݔ௧   =   ∑ A୩ x(t − w୩) ௣
௞ୀ଴ ׬  +   A(t, ө) x(t + ө)dө

଴
ି௛   

Integrating   (4.2.3), after linearizing, we have the solution 

,ݐ)ݔ = (ݐ)ݔ                           ,଴ݐ ф, ׬   + (0 X (t, s) f(s,  ௦)dsݔ
௧

଴                                         (4.2.4) 

where X(t ,s) is the fundamental matrix of the homogenous part of the system  (4.2.3). 

                                X (t , s) = I      (identity matrix); t = s 

From the transformation in Hale (1977) there is a linear operator T such that 

                                   ܺ௧(s)ф = T(t ,s)X(ө);  ө є [-h, 0].                                                 (4.2.5) 

                                X(t+ ө, s) = T(t, s)X(ө),   

 For ө =0,     X(t, s) = T(t, s).I = T(t, s),    where T is defined as follows: 

(i) T(t, s) is an operator defined on C = C ([-h, 0], ܧ௡) 

(ii) T(t, s) is bounded for T є C. 

(iii) T(0)  = I and T is strongly  continuous. 

(iv) T(t, s) is completely continuous in t. 

(v) The family {T(t, s) for t > s }   is a semi group of linear transformations (see Asuquo and 

Usah (2008 )  for these properties.  Now writing (4.2.4) in terms of T (t, s), we have 

,ݐ)ݔ                  ,଴ݐ ф, ݂)  =   [ T(ݐ ,ݐ଴) ]ф(0) +  ׬ ,ݏ)ܺ ௦)௧ݔ
௧బ

 (4.2.6)                                       ݏ݀
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4.6.1. RESULTS ON STABILITY ON NEUTRAL SYSTEMS. 

              A homogenous linear neutral equation is given by 

                                   
ௗ

ௗ௧
 [D(t,   (4.2.7)                                                                ( ௧ݔ ,t)௧)]   =  Lݔ

D(t,  ௧)  is called the functional difference operator. We now give the condition for theݔ

uniform stability of the functional difference operator. 

PROPOSITION 4.7 

            Suppose , ܣ௞,  k =1, 2,…,N   are constant matrices and  ߬௞, where  0 <  τ  ≤  h   

are real valued number such that 
  ೔

  ೖ
 are rational if   N >1. If 

        Dф  =   ф(0)  -  ∑  −)௞фܣ ௞)   ே
௄ୀଵ     

and all roots of the equation   det [ I – ∑  ି݁ ௞ܣ ೖ  ே
௞ୀଵ ]   =  0, have modulus less than one, 

then D is uniformly stable. 

Proof: (see Artstein and Tradmar (1982). 

THEOREM 4.6. (this is the condition for uniform stability of the system (4.2.7)). 

             Consider the system (4.2.7)  

                                        
ௗ

ௗ௧
 [D(t, ௧బݔ,   ( ௧ݔ ,t)௧)]   =  Lݔ

 =  ф  .                                     (4.2.8) 

Suppose u(t), v(t), w(t) are continuous functions and u(t), v(t) are positive non-decreasing for 

t > 0   and   u(0) = v(0) = 0; 

 w(t) is non-negative and non-decreasing and   v : (τ, ∞) x C   →  ܧ௡     is continuous function 

satisfying: (i)    u ( |D(t) ф | )  ≤ v(t, ф) ≤  v( ||ф || ) 

     (ii)     ݒሶ(t,   ф), ≤  - w( |D(t) ф |  

    (iii) If  D  is uniformly stable with respect to ф є C ([y, ∞), ܧ௡) ,then the trivial  

solution of  (4.2.7) is uniformly stable. If in addition, w(t) > 0   for  t > 0 , then 

the trivial solution is uniformly asymptotical stable. 

Proof: (see Artstein (1982)). 

4.6.2. RESULTS ON THE EXPONENTIAL ASYMPTOTIC STABILITY 

IN THE LARGE FOR NONLINEAR NEUTRAL    SYSTEMS. 

Theorem 4.8. (Exponential Asymptotic Stability in the Large). 

                        Consider the system (4.2.2) 

                
ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ  = [(௧ݔ ௧ݔ(ݖ + ׬ ,ݐ)ܣ ஶ(ߠ

଴ ݐ)ݔ + ఏ݀(ߠ                                   (4.2.8) 
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and its perturbation 

   
ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ  = [(௧ݔ ௧ݔ(ݖ + ׬ ,ݐ)ܣ ஶ(ߠ

଴ ݐ)ݔ + ఏ݀(ߠ + ,ݐ)݂  ௧)                              (4.2.9)ݔ

under the hypothesis on the system(4.2.9) with the following assumptions: 

(i) D(t, ф)  = D(t) ф and is uniformly stable. 

(ii)   f is continuous and  ݂ = ଵ݂ + ଶ݂   satisfies the conditions 

             ଵ݂ ( t , ф)  ≤  v(t)│D( t , ф) │; v(t)  ≥ 0 , ф є C,     ׬ v(t)dt 
ஶ

଴ < ∞.  

             Also, for ε > 0, 

             │ ଶ݂( t , ф) │  ≤  ε│D(t, ф)│    ,  t ≥ 0,   ф є C 

then ,the solution ݔ௧(ݐ଴, ф) of the system(4.2.9) is exponentially asymptotically stable, in the 

large. 

Proof 

 By condition (i) and the assumption on a continuous Lyapunov function v( t ,ф ) 

defined in   [ݐ଴, ∞)xC   satisfying the following conditions: 

                                       │ D(t, ф) │ ≤  v(t, ф) ≤ M║ф ║                                                 (4.3.0) 

 ሶ(t, ф)      ≤       av(t, ф)                                                           (4.3.1)ݒ                                          

for all t ≥ ݐ଴.  a,M  positive constants as in Balachandran and Dauer (1986), the 

homogeneous part of system  (4.2.3) vis-a-vis system (4.2.8) is uniformly asymptotically 

stable. That is, the solution ݔ௧(ݐ, ф)  of system (4.2.8), satisfies 

 k ݁௔(௧ି௧బ)║ ф ║ .                                                          (4.3.2)  ≥║ (଴, фݐ)௧ݔ║                          

We now show that the solution ݔ௧(ݐ଴, ф) of system (4.2.3) vis-a-vis (4.2.9) is uniformly 

exponentially asymptotically stable in the large. 

Here ݒሶ   is the usual upper right hand derivative along the solution path of system (4.2.9). 

 Let ݔ௧బ
 be the solutions of systems (4.2.8) and (4.2.9) respectively (଴, фݐ)௧ݔ and (଴, фݐ)

with initial value ф at  ݐ଴.  

From relations (4.3.0) and (4.3.1), we have 

M lim௛→଴ + (଴, фݐ)଼.ሶସ.ଶݒ ≥ ሶସ.ଶ.ଽ(t, ф)ݒ
ଵ

௛
ሷ௧బశ೓ݔൣ

,଴ݐ) ф) − ሶ௧బశ೓ݔ
,଴ݐ) ф)൧                             (4.3.3)  

  on the alternative,  

௧బశ೓ܦ
ሷ௧బశ೓ݔ)

− ሶ௧బశ೓ݔ
׬     = ( ,ݐ)ܮ] ሷ௧ݔ(ݖ

௧బశ೓

௧బ
− ,ݐ)ܮ ሶ௧ݔ(ݖ + ,ݐ)݂  (4.3.4)                                  ݏ݀[ሷ௧ݔ

by the non-atomicity of D, the functional difference operator at zero means there exists a 

constant  ℎ଴ such that 
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ሷ௧బశ೓ݔ║
− ሶ௧బశ೓ݔ

) ║    ≤  
ଵ

ଵି௥(௛బ)
׬  ,ݐ)ܮ] ሷ௧ݔ(ݖ

௧బశ೓

௧బ
− ,ݐ)ܮ ሶ௧ݔ(ݖ + ,ݐ)݂  (4.3.5)                          ݏ݀[ሷ௧ݔ

for a function r.   We use the inequality (4.3.3) to obtain 

 N[ ଵ݂(t, ф) + ଶ݂(t, ф) ]                                                           (4.3. 6)+ (଴, фݐ))଼.ሶସ.ଶݒ ≥ ሶସ.ଶ.ଽ(t, ф)ݒ

For all t ≥ 0 , ф є C,   where 

N = max [  
௠

ଵି௥(௛బ)
,  [  ܯ

We choose ε > 0        so that          ε  =  
௔

ଶே
 

In this domain, define a function 

                                 ସܹ.ଶ.ଽ( (t, ф) = v(t, ф)exp[ N ׬ v(s) ds 
௧

଴                                          (4.3.7) 

The derivative along the solution path is 

ሶݓ ׬ exp{- N  (௧ݔ,ଵݐ))ሶସ.ଶ.ଽݒ  =  (௧ݔ,ଵݐ)  v(s) ds 
௧

଴ } + v(ݐଵ,ݔ௧)  [ -NV(t)exp {-N ׬ v(s) ds 
௧

଴ } ] . 

From (4.3.1) and (4.3.6), we have  

ሶݓ ׬ exp (-N} ≥  (௧ݔ,ଵݐ)  v(s) ds 
௧

଴ } { - N v(t) v(ݔ,ݐ௧) - av(ݔ,ݐ௧)        

                                                       + N(│ ଵ݂(ݔ,ݐ௧)  │+ │ ଶ݂ (ݔ,ݐ௧)  │)} . 

From condition (ii) of the theorem 4.8, we have 

ሶܹ ସ.ଶ.ଽ((t, ф)  ≤  { exp ( -N ׬ v(s) ds 
௧

଴ )} { -N v(t) v(ݔ,ݐ௧)  - av(ݔ,ݐ௧)                                 

                                                             + εN│D(t)ݔ௧  │+  Nv(t)│D(t) ݔ௧│}      

Taking the value of │ D(t)ݔ௧│   as  in (4.3.0),  we have 

      ሶܹ ସ.ଶ.ଽ(( ݐଵ,ݔ௧  )   =  exp{ - N׬ v(s) ds 
௧

଴ } v(ݔ,ݐ௧)  [ Nv(t) – a + Nv(t) +Nε] 

From (4.3.7), we have 

                             ሶܹ ସ.ଶ.ଽ( ݐଵ,ݔ௧ )  =  W(ݔ,ݐ௧)  (Nε- a) = W(ݔ,ݐ௧)(-  
௔

ଶ
 ), 

This is clearly from our choice of ε. 

implies  
ௗ

ௗ௧
௧ݔ,ଵݐ )   ) = W(ݔ,ݐ௧)(-  

௔

ଶ
 ), ⇒ 

ௗ

୛(௧,௫೟)
  -)  =  ( ௧ݔ,ଵݐ ) ܹ

௔

ଶ
 )dt, 

Integrating, we have 

LogeW4.2.9( ݐଵ,ݔ௧  )  = -  
௔௧

ଶ
,      t ≥ ݐ଴.   This implies that      

 W(ݐଵ,ݔ௧ (ݐ଴,  ф)) ≤ exp{  
ି௔(௧ି௧బ)

ଶ
 },  from which we obtain 

D(t) ݔ௧ ( ݐ଴,  ф ) ≤  β ݁௖(௧ି௧బ)║ф║     ,for t ≥ ݐ଴,  ф єC,           where      

ߚ = ܰ−)݌ݔ݁ܯ ׬ ,(ݐ݀(ݐ)ܸ ܿ = −
௔

ଶ

∞

଴ . 

This establishes the uniform exponential asymptotic stability in the large of (4.2.2) vis-a-vis 

the system (4.2.9) 
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REMARK 4.8 

Observe that the system (4.2.9) is uniformly exponential asymptotically stable in the 

large implies that the solution of the large implies the solution of the system has an 

exponential estimate.  That is, 

                 0→║ (଴,  фݐ) ௧ݔ ║ ,     ∞→ β ݁௖(௧ି௧బ)║ф║ . Clearly, as    t  ≥   ║ (଴, фݐ) ௧ݔ ║        

Since the trivial solution has been shown to be uniformly stable,  the system (4.2.9) is said to 

be uniformly asymptotically stable.  Evidently, uniform exponential asymptotic stability in 

the large of a system guarantees its uniform asymptotic stability. We now state the realization 

as a theorem. 

Theorem 4.9. (Global Uniform Asymptotic Stability). 

             Consider the nonlinear neutral system 

  
ௗ

ௗ௧
 [ D(t, ݔ௧) ] =  L(t , z) ݔ௧   +  f(t , ݔ௧)  + ׬ A(t) x(t + ө)dө

଴
ିஶ ௧బݔ  ;  

 = ф 

Under all the assumptions of theorem 4.8, assume further that the system (4.2.9) satisfies 

                      f( t , 0) = 0,  

then  the system (4.2.9) is uniformly exponentially asymptotically stable. 

Proof 

 We seek to prove that system (4.2.2) vis-à-vis (4.2.9) is stable and for every η > 0 , 

every   ݐ଴ ≥0   and every number ܪ଴ ,there exists a T(η) independent of  ݐ଴ such that   ф єC ,    

 ║ ф║<  ܪ଴  ,     implies 

 .଴ +T(η)ݐ  < η  ,    for  t  >   ║ (଴, фݐ) ௧ݔ║     

By the assumption of uniformly exponentially asymptotic stability in the large of the system 

(4.2.9), we have 

                      │D(t) ݔ௧ (ݐ଴, ф) │ ≤  h(t)β݁௔(௧ି௧బ)║ф║                                                      (4.3.8) 

                                       for t ≥ ݐ଴, ф є C. 

From Lemma 3.4 of Cruz and Hale (1970), there are positive constants a, b, c, d so that for 

any  s є[ݐ଴, ∞). 

 ௔(௧ି௦)[bβ║ ф ║+  cβ║ ф ║+ dβ݁௔(௧ି௧బ)║ ф ║]                               (4.3.9)݁   ≥   ║ (଴, фݐ) ௧ݔ ║

                                                                              for   t >  s + h  ≥  ݐ଴+ h. 

Let    ε > 0 , be  a given constant. 

Choose    δ  =  ( bβ + cβ + d β ) < ε ,  then  if 

           ║ф║   ≤   δ║ݔ௧(t, ф) ║ ≤  βbδ + cβδ + dβδ < ε 

This proves the uniform stability if   x = 0   is a solution. 
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It now remains to show that 

  ≥  ║ (଴, фݐ) ௧ݔ ║                                         
ఎ

ଶ
,  for    t ≥ T+ ݐ଴     

 where т does not depend on ݐ଴  , proves the global uniform asymptotic stability of the system 

(4.2.3) vis-à-vis the system (4.2.9 ) 

 Let η, ܪ଴  be arbitrary positive numbers, choose   ଵܶ =  ଵܶ(η)    so that 

                                              d sup│ h(u) │ <  
ఎ

ଶ
,  ;   T(η)  ≤  u                                         (4.4.0) 

and  

       choose T = T(η, ܪ଴  )  ≥ ଵܶϒ + h  so that 

                          exp { -a(T- ଵܶ + ϒ )}{ bܪ଴ + c max்ழ௎ │h(u) │  ≤  
ఎ

ଶ
,                           (4.4.1) 

For any  ݐ଴є[ T, ∞)  and  s =  ݐ଴ + Tϒ    if    ║ф║ ≤ ܪ଴  , 

 the relation (4.3.9 ) implies 

bδ + c max்ழ௎ ](଴ – ଵܶ+ϒݐ - t)exp{-a ≥ ║(଴, фݐ) ௧ݔ║ │h(u) │ + d max௧బା்ିఎஸ௨ │h(u) │ ] } 

From (4.4.0) and (4.4.1) 

 ≥ ║(଴, фݐ) ௧ݔ ║
ఎ

ଶ
{exp(-a(t-T-ݐ଴,) + 

ఎ

ଶ
}  ,  for t ≥ݐ଴, + TIY + h .  

Therefore 

  ≥  ║ (଴, фݐ) ௧ݔ ║
ఎ

ଶ
  ;  t ≥ T+ ݐ଴,    ,  as  t →∞  

  Since T does not depend on the initial time  ݐ଴ , system (4.2.3) vis-à-vis (4.2.9) is globally 

uniformly asymptotically stable. 

REMARK 4.9 

 It is evident that under boundedness conditions on the perturbation function, the 

uniform asymptotic stability of the non-linear base guarantees the global uniform asymptotic 

stability of the non-linear perturbation.  To shed light on theorem 4.8, we give the following 

example(application). 

APPLICATION 

Consider the system 

                  D(t, ݔ௧)  =  L(t , ݔ௧)   +  f(t , ݔ௧)                                                                       (4.4.2)                                                                

where D(t, ݔ௧)  =  (ݐ)ݔ − ݐ)ݔܿ − ℎ)     and   a ,c, are constants such that a > 0, │c│< 1. 

L(t , ݔ௧)   = ܽ(ݐ)ݔ. 

f(t , ݔ௧)   =      { 
ଵ

(ଵା௧మ)
 [sin (1 + ݔ) − 1))]  + loge[ ݁ઽ(cos (3 − ݔ)2 − 1))]}. 

 We wish to discuss the exponential stability of the system using the Lyapunov function 
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                                             v(θ)  = (ܦф)ଶ + ac ׬ ଶ(ө)dөߔ
଴

ି௛  

and  infer from this result that the system is uniformly asymptotically stable. 

Solution 

 We first show that the functional difference operator 

D(t, ݔ௧)  =  (ݐ)ݔ − ݐ)ݔܿ − ℎ)     is uniformly stable. 

Now, 

Dф = ф(0) – c ф(-h) 

The number of delays is N= 1, from proposition 4.7,  
  ࢐

  ࢑
    = 1   ,  and hence 

  det [ I – ∑ ௛ିߦ௞ܣ   ே
௞ୀଵ ]  =  0   , ⇒    det [ I   −ܿିߦ௛  ]    =   0 

 ௛   =   1ିߦܿ         ⇒      

௛   =   ଵିߦ         ⇒   
௖
 ,  ௛   =   cߦ        ⇒      ,    

        ⇒    │ ξ│ =  │c   │
భ
೓  <  1  ,    since │c│ < 1. 

We have shown that the modulus of c is less than one, hence by the provision of the 

proposition, we conclude that the functional difference operator D(t, ݔ௧)  is uniformly stable. 

 A resort to Cruz and Hale (1970) establishes the uniform asymptotic stability of the 

homogenous system. 

                                       
ௗ

ௗ௧
,ݐ)ܦ]  ,ݐ)ܮ  =  [(௧ݔ  .(௧ݔ

 We are now in a good position to investigate the asymptotic exponential stability of 

the non linear system 

                                       
ௗ

ௗ௧
,ݐ)ܦ]  ,ݐ)ܮ  =  [(௧ݔ (௧ݔ + ,ݐ)݂   .(௧ݔ

,ݐ)݂  }  =  (௧ݔ
ଵ

(ଵା௧మ)
 [sin (1 + ݔ) − 1))]  + loge[ ݁ઽ(cos (3 − ݔ)2 − 1))]} :  ε > o 

ଵ݂(ݐ,  =  (௧ݔ
ଵ

(ଵା௧మ)
 [sin (1 + ݔ) − 1))]   

  ଶ݂(ݐ, ௧)  =  loge[ ݁ઽ(cos (3ݔ − ݔ)2 − 1))] 

Evidently, 

               D(t, ф)  = a(t) , │ D(t, ф) │  =  │ a(t) │ 

               │ D(t, ф) │   ≤ k║ ф ║  ,  k > 0. 

               │ ଵ݂ (t, ф) │ ≤   
ଵ

( ଵା୲మ )  
  ≤   v(t)│D(t, ф) │  ,  v(t)  ≥ 0 

Set 

            V(t)  =  
ଵ

( ଵା୲మ )  
 ଴ = 0ݐ  , 
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׬                    
ௗ௧

( ଵା୲మ )

ஶ
଴ ଴[(ݐ)݊ܽݐ]  =   

ஶ  =  π < ∞. 

 │ ଶ݂(ݐ, ф)│     =    │  logee
ε(cos (3 − ݔ)2 − 1))]} │ =   │ logee

ε││(cos (3 − ݔ)2 − 1))]} │ 

                          ≤  logee
ε  = εlogee  = ε. 

Evidently, 

                         ଶ݂(ݐ, ф)  <  ε│D(ݐ, ф)│     :      t ≥ 0 , ф є C .Having satisfied the boundedness 

condition on the perturbation function, we use the given Lyapunov function to show that the 

base system is uniformly asymptotically stable.Given  

                 v(ө) ≥ (ߔܦ)ଶ  + ac2 ׬ фଶ(ө)dө 
଴

ି௛ .     Clearly,     v(ө)  ≥ (ߔܦ)ଶ  . 

This shows that a lower bound exists. 

We now compute the derivative of v 

 ሶ(ө)  = 2 (D ф)ݒ                           
ௗ

ௗ௧
(D ф) + aܿଶ [фଶ(0) + фଶ(-h)] 

                                   ≤ 2[ф (0) + c ф (-h) ][a ф(0)] + aܿଶ фଶ(0) + aܿଶ фଶ(-h) 

                                   = 2a ф 2(0) + ac ф (-h) ф (0) + aܿଶ фଶ(0) + ac2 фଶ(-h) 

                                   =  a[фଶ(o) + 2c ф(-h)ф(0) + ܿଶфଶ(-h) ] +  a фଶ(0) +aܿଶ фଶ(0) 

                                   ≤   a[ ф (0) + c ф(-h) ]2 + a (1-ܿଶ) фଶ(0) 

ሶ(ө)   =  a[ ф (0)ݒ                           +  c ф(−h) ]ଶ  +  a(1-ܿଶ ) фଶ(0) 

                                  ≤  a(1-ܿଶ ) фଶ(0)   ≤   ac фଶ(0). 

By the hypothesis on a, and c,     ݒሶ  (θ)  ≤  W(│ D ф │)  . 

 ሶ(θ) is therefore negative semi-definite. The homogenous system is uniformly asymptoticallyݒ

stable.  By theorem 4.8, system (4.4.2) is exponentially asymptotically stable in the large. 

That is, the solution of (4.4.2) is such that for constants k, a 

,଴ݐ)௧ݔ║                     ф)║   ≤  β݁௔(௧ି௧బ)║ ф║,      ⇒    ║D(ݔ௧(ݐ଴, ф) ║     ≤   K݁௔(௧ି௧బ) ║ ф║ 

Observe that if       t →∞ ,      ║ ݔ௧(ݐ଴, ф) ║→0                     

This condition, in addition with the uniform stability of the functional difference operator, the 

linear base, establishes the uniform asymptotic stability of the non linear system. 
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4.7.   EXISTENCE OF MILD SOLUTION OF NON-LINEAR NEUTRAL 

FUNCTIONALDIFFERENTIAL   EQUATIONS IN BANACH SPACES 

Preamble. 

         Recall that to extend the existence results for non-linear abstract neutral differential 

equations in the work of Balachandran, Leelamani and Kim (2006) to the system with 

delay base is the objective of our work here. We shall in this work, therefore present the 

system  

ௗ

ௗ௧
(ݐ)ݔൣ + ,ݐ)݃ ,(ݐ)ݔ ,൯(ݐ)ଵݑ൫ݔ … , ,ݐ)ܮ = ൧((ݐ)௠ݑ)ݔ (௧ݔ + ℎ(ݐ, ,(ݐ)ݔ ,൯(ݐ)ଵݒ൫ݔ … ,  (൯(ݐ)௡ݒ൫ݔ

 x (θ) = 0 ; θ є [-h, 0], t є J = [0, ݐଵ], ݐଵ > ݐ଴                                                                 (4.4.3), 

with the purpose of obtaining mild solutions of system (4.4.3) in the Banach Spaces, using 

Schaefer’s fixed point theorem.(See Appendix A).In the system (4.4.3), g, L, h are the 

systems parameters. L is the infinitesimal generator of compact analytic semi-group of 

bounded linear operators ܶ(ݐ) in a Banach space X.   E is the real line. 

,ݐ)ܮ ׬ =  (௧ݔ .)ߟ݀ , ,ݏ ф)଴
ି௛ ݐ)ݔ + (ݏ = ∑ ݐ)௞ܣ − ௞)ஶݓ

௞ୀ଴ ׬ +  A(t, θ)x(t +  θ)
଴

ିஶ ݀ఏ  

is a bounded linear operator, where the n x n matrix functions ܣ௞, A(t, θ) are measurable in 

((t, s) є E x E,  θє [- ∞, 0).   η is normalized such that 

η (t, s, ф) = 0, s ≥ 0 for all ф 

η (t, s, ф) = η (t, -h, θ) for all s ≤ -h 

η (t, s, ф)  is continuous from the left in s on (-∞, 0] and has bounded variations on  (-∞, 0] 

for each t, ф and there is an integrable function M such that 

,ݐ)ܮ ║  .[௧ є ( -∞,0ݔ =  ௧║       ,for all t є ( -∞,∞ ), фݔ║ ௧)   ║ ≤   M(t)ݔ

We   assume     L(t, ф) is continuous.     Let   0єD(L), then the fractional power La  for   , 

 0 < a < 1   as closed linear operator on its domain   D( La ) is dense in X. Furthermore, 

   D( La ) is  a Banach space under the norm 

║x ║a   =  ║ La x║       for  all  x є D ( La )    and it is denoted by   ܺ௔.   h is a  

function defined on the product space  Jxܺ௡ାଵ     into  X 

g : [0,ݐଵ] x ܺ௡ାଵ  → X,   is a continuous function. 

The delays ݑ௜(ݐ), ݒ௝(ݐ), are continuous scalar valued functions defined on J 

such that    ݑ௜(ݐ) ≤ t     and ݒ௝(ݐ) ≤ t.        

That is, these are values preceding t. We define the supremum norm on X  by       

║x║ = max௫є௑ |x (t)|. 
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The imbedding   ܺ௔ → ܺ௕      for 0< b < a < 1 is compact whenever the resolvent operator L 

is compact. For semi-group {T(t) }, the following properties will be used: 

(i) There is a number    ଵܰ > 1 such that ║T (t)║ ≤ ଵܰ  for all t є [0, ݐଵ]. 

(ii) For any a > 0, there exists a positive constant ଶܰ such that  

     ║La T (t)║ ≤  
ேమ

௧ೌ   ,           0 < t < τ 

To study system (4.4.3), we assume the hereditary property of the function. 

Let          x: (-∞, τ] → X, 

 ௧    is a function defined on the delay interval  ( -∞ ,0 ]   such thatݔ

     ௧ (θ)   =  x( t + θ )ݔ            

 belongs to some abstract phase space  ( -∞ ,0]   . 

In this work, the state space will be the abstract phase space   C ([-∞, 0]) 

Definition 1.12.1:   (see Balachandran, Leelamani and Kim (2006)). 

A function    ݔ(. )   is called a mild solution of system (4.4.3) if   

 .[for t є (-∞, 0    ,      0 =   (ݐ)ݔ                              

The restriction of  (ݐ)ݔ   to the interval  [ 0, τ ]   is continuous and for each  [ 0, τ ], the 

function (ݐ)ݔ    satisfies  system( 4.4.3).  That is, the function  (ݐ)ݔ  satisfies the following 

integral equation : 

 {(௠(t)ݑ)x,…,(ଵ(t)ݑ)t ,x(t),x}g - [(௠(0)ݑ)x,…,(ଵ(0)ݑ) 0 ,x]T(t){0 + g  =   (ݐ)ݔ

                         − ׬ LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s))) ds 
௧

଴   

                          + ׬ T(t − s)h(  s , x(s), x(ݒଵ(s)), … , x(ݒ௡(s)))ds  
௧

଴                               (4.4.4) 

where   LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s)))  is integrable for    s є ( -∞, t ] . 

   

4.9.1. EXISTENCE OF SOLUTIONS BY FIXED POINT TECHNIQUE 

      In this section we establish the existence of mild solutions for neutral systems with 

multiple delays by the application of Schaefer’s Fixed Point Theorem. 

  Theorem 4.9.1 

         Consider the system 

ௗ

ௗ௧
ൣg(t , x(t), x(ݑଵ(t)), … , x൫ݑ௠(t)൯)൧ = ݐ)ܮ, (௧ݔ + h(t , x(t), x(ݒଵ(t)), … , x(ݒ௡(t)))      (4.4.3) 

under the following basic assumptions: 

(1). For each t є J, the function   h (t , . ) : ܺ௡ାଵ   →  X            ,   is continuous       and 



57 

 

      for each ( ݔ଴, ,ଵݔ … ,  X    , is strongly → [0, τ] :(௡ݔ,…,ଵݔ,଴ݔ .) ௡)߳ܺ௡ାଵ , the function  hݔ

measurable  

(2).       For each positive number k, there exists ܽ௞ є [0 ,τ] such that  

     max|∥௫బ‖…‖௫೙‖ |   h(ݔ଴, ,ଵݔ … ,   (௡ݔ  ≤  ܽ௞           , t є J . 

(3).       The, function g: [0, τ] x ܺ௠ାଵ  → X            is completely continuous and          

             for  any  bounded set Q0 є C ( (-∞,0] , X  ) ,  the set  

            {  g(t , x(t), x(ݑଵ(t)), … , x൫ݑ௠(t)൯) : x є Q0 } is equicontinuous. 

(4).       There exist μ є (0,1)  and a constant  β  ,such that      ║(L)μ G(t , x(t))║≤  ଷܰ ,      t є J  

(5).         There exists an integrable function M, M: [0, τ] → [0,∞)   such that 

                 ║ h(t , x(t), x(ݒଵ(t)), … , x(ݒ௡(t))) ║≤ (n+1)mΩ(║x║),   

             where Ω: [0, ∞) → [0, ∞)     is a continuous non decreasing function. 

׬      .(6) M(s)ds  
ఛ

଴ ׬  ≥
ௗ௦

௦ାఆ(௦)

ஶ
ௗ  

                where   d =   ଵܰ[║ݔ଴║+ ଷܰ ସܰ] + ଷܰ ସܰ   + ଷܰ ଶܰ     ,       N = ║(L)-a ║,          

M(t)   =     ଵܰN(t)(݊ + 1)ଶ. 

Now let us take                                                                     

ቀt , x(t), x൫ݑଵ(t)൯, … , x൫ݑ௠(t)൯ቁ  = ( t , p (t) ),   and 

 (t , x(t), x(ݒଵ(t)), … , x(ݒ௡(t))) = ( t , q(t) ) 

If the above conditions are satisfied, then the equation (4.4.3) has a mild solution on the 

interval        [ݐ଴ ,ݐଵ]    ,   ݐଵ > ݐ଴. 

 

Proof 

We start by converting system (4.4.3) to its’ integral equivalent of system (4.4.4) and to 

operator equation. 

       Consider the Banach space B = C (J, X) with norm ║x║ = sup {│x (t) │: t є J} ≤ k. 

Define 

 X (t) = λ (yx)(t)   ,         0 < λ< 1    .where Ψ: y → y        is   defined as 

(Ψx)(t)  = T(t)[x(0) + g(0 , u(0) ] – g(t ,w(t) + ׬ LT(t − s)g(s, P(s)ds 
௧

଴ ׬ +   T(t − s)h(s , q(s))ds .
௧

଴  

Making use of the basic assumptions of theorem 4.9.1, we obtain an estimate of the solution  

x (t) of equation (4.4.3) 

    ║x(t)║ ≤ ଵܰ[ ║x(0) ║ + N3N4] + [ ଷܰ ସܰ]  + N2 ׬ ଷܰ (t − s)(β )ିଵds 
௧

଴  

β 
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                                              + ଵܰ ׬ ((݊ + 1))M(s)Ω(  q(s)  )ds
௧

଴   

                             ≤ ଵܰ[  ║x(0) ║ + ଷܰ ସܰ ] + ଵܰ ׬ (n + 1)M(s)Ω(  q(s)  )ds    
௧

଴                (4.4.5)  

Denoting ║x(t)║ in  (4.4.5)  as less or equal to μ(t) ,    we have 

║x (t)║  ≤ μ(t)   ,   and     μ(0)  =    ଵܰ[ ║x(0) ║ + ଷܰ ସܰ]   
ேయேమ     

ఉ
 

Differentiating      μ (t), we have   

݊)ሶ(t)  =      ଵܰߤ                                          + 1)M(t)Ω(║q(t)║) ≤  μ(t) [ Ω( μ(t) ) ]         

This implies  ׬
ଵ

ఆ(௦)

ఓ(௧)

ఓ(଴) ׬  > ݏ݀ ݏ݀(ݏ)ܯ
௕

଴ ׬  ≥ 
ௗ௦

ఆ(௦)

ஶ
ఓ(଴)           , 0 ≤ t < b                             (4.4.6)                          

The inequality (4.4.6 ) implies that there is a constant k such that   μ (t) ≤ k, 

 for   t є [ 0 , ݐଵ ]     and hence , we have 

                                 ║x (t)║  =  sup {│x(t) │: t є J} ≤ k 

where k depends only on  θ and on the functions M and Ω.  Evidently the function Ψ   is 

uniformly bounded. 

     We shall now prove that     Ψ: Y → Y is completely continuous operator. 

That is,    Ψ    is relatively compact.   

 Let   Y ={ x є Y : ║x║  < k }   for some   k > 1 . 

We show that Ψ maps ܤ௞ into an equicontinuous family. 

Let            x є ܤ௞    and    ݐଵ, ݐଶ є [0 ,b] .     Then   if 0 ≤ ݐଵ< ݐଶ < b, we have 

         (Ψx)( ݐଵ)   =  T(ݐଵ)[ x(0) + g(0 ,u(0) ) ] – g(ݐଵ,u(ݐଵ) ) +  ׬ LT(ݐଵ − s)g(s , u(s))ds
૚࢚

૙   

׬ +                                       T(ݐଵ − s)h(s , v(s)ds   
௧భ

଴                                                      (4.4.7 ) 

(Ψx)( ݐଶ)    =  T(ݐଶ)[ x(0)  + g(0,u(0))]  -  g(ݐଶ  ,u(ݐଶ))   +  ׬ LT(ݐଶ  − s)g(s , u(s )ds  
૛࢚

૙   

׬         +                                         T(ݐଶ  − s)h(s , v(s)) ds
௧మ

଴                                         (4.4.8). 

 (4.4.7).   implies    (Ψx)( ݐଶ)    =  T(ݐଶ)[ x(0)  + g(0,u(0))]  -  g(ݐଶ  ,u(ݐଶ))  

׬  +                                         LT(ݐଶ  − s)g(s , u(s )ds  
௧భ

଴ ׬        +  T(ݐଶ  − s)h(s , v(s))ds  
௧భ

଴   

׬   +                                         LT(ݐଶ  − s)g(s , u(s )ds  
௧మ

௧భ
׬      +  T(ݐଶ  − s)h(s , v(s))ds 

௧మ

௧భ
.               

 If   0 ≤  ݐଵ   <   ݐଶ < b ,then 

║(Ψx)( ݐଵ   ) - (Ψx)( ݐଶ)║≤ ║[T(ݐଵ   ) – T(ݐଶ)][x(0) + g(0 ,u(0)]║  

+║g(ݐଵ   ,u(ݐଵ   )-g(ݐଶ,u(ݐଶ))║  + ║ ׬ [LT (ݐଵ   − s) − LT (ݐଶ  − s)] [g(s , u(s))] ds
௧భ

଴   ║ 

׬║ + [T(ݐଵ   − s) –  T(ݐଶ  − s)][h(s , v(s))]ds
௧భ

଴ ׬║ + ║  LT(ݐଶ  − s)g(s, u(s))ds
௧మ

௧భ
 ║ 

׬║+ ଶݐ)  − s)h(s , v(s))ds
௧మ

௧భ
 ║ 
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≤ ║[T(ݐଵ   ) – T(ݐଶ)][x(0)+g(0 , u(0))]║+ ║g(ݐଵ   ,u(ݐଵ   )) – g(ݐଶ,u(ݐଶ))║ 

׬   + [LT (ݐଵ   − s)  −  LT(ݐଶ  − s)]NଷNସ   ds 
௧భ

଴ ׬ +     [T(ݐଵ   − s) − T(ݐଶ  − s)]    NଷNସds
௧భ

଴   

׬ +   LT(ݐଶ  − s)  a୩(s)ds   
௧మ

௧భ
׬   +     T (ݐଶ  − s)   ܽ௞(s) ds

௧మ

௧భ
                                           (4.4.9) 

The right hand side of (4.4.9 ) is independent of  x є ܤ௞  and tends to zero as    ݐଵ   →  ݐଶ . 

Since Ψ is completely continuous operator T(t) for    ݐ଴ > 0 , implies continuity in the uniform 

operator topology. Thus Ψ maps ܤ௞  onto an equicontinuous family ,  ௞ is uniformly boundedܤ

by the estimate of x(t)  provided by  the system(4.4.9 ) . 

   Next, we show that the closure of   Ψܤ௞ is compact.    Since we have shown that Ψܤ௞is an 

equicontinuous family, by Ascoli-Arzelas’ theorem, it suffices to show that Ψ maps  ܤ௞ into a 

pre-compact set in X. 

   Let   0 < t < ݐଵ   be fixed and let ε be a real number satisfying 0 < ε < t   for xєܤ௞ , we define 

׬+  g(t ,u(t)) – [g(0 ,u(0)) + (଴ݐ)x]T(t)   =    (t)(ఌ xߖ) LT(t − s)g(s , u(s))ds 
௧ିఌ

଴   

׬      +                              T(t − s) h(s, v(s) ) ds 
௧ିఌ

଴   

                   =   T(t)[x(t0) + g(0 ,u(0))] - g(t , u(t))  - T(ε)׬ T(−ε , ε)h(s , v(s))ds  
௧ିఌ

଴ . 

Since   T(t) is a compact operator, the set   ఌܻ(t) ={ (Ψx)(t): x є ௞ܻ}   , 

is pre-compact in X ;  for every ε , 0< ε < t . 

Moreover, for every x є ௞ܻ   , we have 

║(Ψx)(t) - (ߖఌ x)(t)    ║≤  ׬    LT(t − s)g(s, u(s))  ds    
௧ିఌ

௧ ׬   +    T(t − s)h(s , v(s))  ds
௧ିఌ

௧  

׬ ≥                       LT (t − s) g(s , u(s))   ds   
௧ିఌ

௧ ׬ +    T (t − s)   ܽ௞(s) ds.
௧ିఌ

௧  

Therefore, there are pre-compact sets arbitrarily close to the set {(Ψx)(t): x є ௞ܻ}    

Hence the set {(Ψx)(t): x є ௞ܻ}   is pre-compact in X. 

Ψ: Y → Y   is continuous. 

Let {ݔ௡}        be an arbitrary sequence in Y   with   ݔ௡ → x       in   Y,  

then there is an integer such that ║ݔ௡║ є Y and    x є Y.   

 By the boundedness of sequence {ݔ௡}, it follows that    

g ( t ,ݑ௡(t)) → g(t ,u(t))     for each t є J, since 

║ g ( t ,ݑ௡(t)) -  g(t ,u(t)) ║  ≤ 2ܽ௞(t). 

Invoking the Lebesgue theorem on dominated convergence, we have   

║Ψ ݔ௡ -Ψx║  =  Sup║[ g (t , ݑ௡ (t)) -  g(t ,u(t))]  

׬ +                            LT(t − s)[g(s , – (௡ (s)ݑ  g(s , u(s))]ds
௧

଴   

t-ε 
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׬   +                         T(t − s)[h(s , – (௡(s)ݒ  h(s , v(s)) ]ds 
௧

଴                            

                        ≤  ║[ g (t , ݑ௡ (t)) -  g(t ,u(t))]║ 

׬ +                                     LT(t − s)    [g(s , – (௡ (s)ݑ  g(s , u(s))]  ds
௧

଴   

׬    +                                   T (t − s)      [h(s , – (௡ (s)ݒ  h(s , v(s)) ]  ds.         
௧

଴   

 Thus Ψ is continuous. 

This completes the proof that Ψ is completely continuous. 

Finally, the set  L(Ψ)  given by     

 L(Ψ)  =   {x єY:  x = λ(Ψx) , λ є  [0 ,1]}  is bounded. 

Consequently, by the application of Schaefers’ fixed point theorem, the operator Ψ satisfies 

all the conditions of the theorem and, therefore, has a fixed point in Y.  

This fixed point of Ψ is the mild solution of the system of interest on J satisfying 

     (Ψx)(t) = x (t). 
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CHAPTER 5 

SUMMARY, CONCLUSION, RECOMMENDATION AND 

CONTRIBUTIONS TO KNOWLEDGE 
 

5.1: SUMMARY. 

 Controllability is one of the fundamental concepts in mathematical control theory. It is a 

qualitative property of dynamical control systems and is of particular importance to the 

control theorist. In the recent past, the theory of control of deterministic processes with 

several degrees of freedom appeared to have reached a satisfying stage of completeness. As 

interpreted by the theory of nonlinear ordinary differential equations, Iyai (2006) the 

fundamental problems of control theory have been mathematically posed and answered and 

hence the theory has reached a certain degree of stability and perfection. The authors as a 

result believed that a thorough and careful presentation of the current status of control theory 

would serve the useful purpose of offering a foundation on which later researches would be 

based. It is in this intent, that this work: “Controllability Results for Nonlinear Neutral 

Functional Differential Systems” was carried out. Our Objective therefore was to present an 

organized treatment of control theory that could be complete within the limitations set by the 

restrictions of deterministic problems identifiable in terms of functional differential 

equations. Suffice it is to mention here that two kinds of functional differential equations 

abound: 

(a) The Retarded Functional Differential Equation given as 

ሶݔ                                               = ,ݐ)݂ ;   (௧ݔ (଴ݐ)ݔ    = ߶ = ௧బݔ
                             

  where ф is the initial point and is a function defined in the delay interval [-h,0], h > 0. 

(b)   The Neutral Functional Differential Equation given as: 

                                       
ௗ

ௗ௧
,ݐ)ܦ]  [(௧ݔ = ,ݐ)݂ ;  (௧ݔ (଴ݐ)ݔ    = ߶ = ௧బݔ

                       

where D is a bounded linear operator              

       It is easily observed that, both equations are characterized by delays. The motivation 

for this study stemmed from the fact that most realistic systems should encompass not 

only the present, but also the past state of the system. This is encountered in many areas 

of human activities. For a good grasp of the present,(t),some knowledge of the past, (t-h),  

t ≥ 0, h > 0 , is very important. In general, differential equations which include the present 
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as well as the past state of any physical system is called a Delay Differential Equation 

(or Functional Differential Equations).   

The Retarded Functional Differential Equations (RFDE) are characterized with delays on 

the state of the system.    A typical example is the system 

                                                  
ௗ

ௗ௧
(ݐ)ݔ = ݐ)ݔ − ℎ)  ,   ℎ > 0                                                        

,ℎܽ݊݀ ݎℎ݁ݐ݋ ℎ݁ݐ ܱ݊  are those (ܧܦܨܰ) ݏ݊݋݅ݐܽݑݍܧ ݈ܽ݅ݐ݊݁ݎ݂݂݁݅ܦ ݈ܽ݊݋݅ݐܿ݊ݑܨ ݈ܽݎݐݑ݁ܰ

that have delays on the state as well as   in the derivatives. A typical example is the 

system 

                                 
ௗ

ௗ௧
(ݐ)ݔൣ  − ܿ൫ݐ)ݔ − ℎ)൯൧   =    ܾݐ)ݔ − ℎ)                                     

,ܿ ݁ݎℎ݁ݓ ܾ , ܽ݊݀ ( ℎ >        .ݏݐ݊ܽݐݏ݊݋ܿ ݁ݎܽ(0

  Systematic study of controllability started over the years at the beginning of the sixties 

when the theory of controllability based on the description in the form of state space for 

both time –varying and time invariant linear control systems was carried out. Roughly 

speaking, controllability generally means that, it is possible to steer a dynamical control 

system from an initial state to a final state using the set of admissible controls. Optimal 

control means doing the same in a best conceivable way. There are many different 

definitions of controllability which strongly depend on the class of dynamical control 

systems. In recent years, various controllability problems for different types of nonlinear 

systems have been considered. However, it should be stressed that, most of the reported 

work in this direction has been mainly concerned with controllability for linear 

dimensional systems with constrained control and without delays (see Klamka (1991), 

Sun (1996), Underwood and Young (1979)).Later on delayed differential equations 

came to limelight (see Nse (2007), Nse (2007)).A delayed equation on a linear system is 

one which affects the evolution of the system in an indirect manner. 

If we consider the equation 

ሶݔ                                                                                                       (ݐ)ݑܤ + (ݐ)ݔܣ  =  

where A and B are nxn and mxn matrices. We see that the action of the control is direct in 

that the local behavior of the trajectory is affected only by the local behavior of the 

control u(t) at time t. It is known that, most natural applications give rise to mechanism of 

indirect actions where decisions in the control function are shifted, twisted or combined 

before affecting the evolution thus  comprising the delay u(t-h) represented by the system 
 

ሶݔ                                             ݐ)ݑܤ + (ݐ)ݔܣ  =   − ℎ)                                                  
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It is well known that, the future state of realistic models in the Natural Science, 

Economics and Engineering depends not only on the present, but also on the past state 

and at times , even on the derivative of the  past state. There are simple examples from 

Biology (predator-prey, Lodka Volterra, Spread of Epidemics), from Economics 

(dynamics of capital growth of global economies) and from Engineering (mechanical and 

aero – space , aircraft stability, automatic steering using minimum fuel and effort, control 

of high speed, closed air circuit, etc, this research effort are therefore intended to forge 

far-reaching solutions to these daily human endeavors. 

 Objective. 

      Our principal objective in this work was to obtain Necessary and Sufficient 

Conditions for controllability, optimal control and stability for Neutral Functional 

Differential Systems. It is known from Onwuatu (1993) that, if a system can be shown to 

be relatively controllable, then optimal control is unique and Bang-Bang. In the light of 

this, we have considered the Neutral Volterra Integrodifferential Equation of the form 

ௗ

ௗ௧
ቂ(ݐ)ݔ − ׬ ,ݐ)ܥ ݏ݀(ݏ)ݔ(ݏ − (ݐ)݃

௧
଴ ቃ   

                                  = A(t)x(t)  +   ׬ ,ݐ)ܩ ݏ݀(ݏ)ݔ(ݏ + ׬ ݀ఏݐ)ܪ, ݐ)ݑ(ߠ + (ߠ
଴

ି௛
௧

଴             

with initial condition ݔ(ݐ଴) = ݔ଴   ,where xєܧ௡  is the state space and u єܧ௠  is the control 

function, H(t ,θ) is an nxm matrix continuous at t and of bounded variation in θ on [-h,0]; 

h>0 for each tє[t0,t1] ; t1 > t0 .The nxn matrices ݐ)ܥ, (ݐ)ܣ, ,ݐ)ܩ,(ݏ  are continuous in (ݏ

their arguments. The n-vector function g is absolutely continuous. 

      The above system was investigated for existence, form and uniqueness of optimal 

control by first of all considering the relative controllability of the system. 

Scope. 
                Differential systems are generally important tools for harnessing different 

components into a single system and analyzing the inter-relationships that exists between 

them which otherwise might continue to remain independent of each other. Physical systems 

which express the present state of solutions are the most common system encountered in the 

theory of differential equations. The Scope of this work therefore went beyond these systems 

and addressed more realistic systems involving not only the present but also the past states of 

the system. This is because the latter permeates various aspects of life and has of late 

triggered interest in research. Neutral differential equations arise in many areas of applied 

Mathematics and such equations have received much attention in recent years. For example, 
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the mixed initial boundary hyperbolic partial differential equations which arise in the study of 

lossless transmission lines can be replaced by an associated neutral differential equation. This 

equivalence has been the basis of a number of investigations of the stability properties of 

distributed networks, (see Iyai (2006), Kwun (1991)). 

      It is in this light also that we intended to broaden the scope to involve systems of the 

Neutral type. This is because in recent years, it has emerged as independent branch of modern 

research due to its connection to many fields such as continuum mechanics, population 

dynamics, system theory, biology epidemics and chemical oscillations (see Balachandran, 

Balasubramaniam and Dauer (1996), Burton (1983), Corduneanu (1985 )). 

In our system, we studied the linear neutral volterra integro-differential equation. The 

purpose of our investigation was firstly to obtain necessary and sufficient conditions for the 

relative controllability of the equation. Secondly, we went beyond the controllability of the 

system to obtaining the existence, form and uniqueness of the optimal control. Volterra-

integro-differential equation has wide application in applied mathematics and engineering; 

this underscores its importance in mathematical control theory. 

 We obtained a variation of constant formula for the solution of the equation and were 

able to extract the reachable set, the attainable set and the controllability grammian. These are 

the ingredients needed for the controllability results. In theorem 4.1, it was established that 

the system is relatively controllable if the controllability grammian is non-singular. This 

result made it possible for the invertibility of the grammian and the use of it in forming a 

control which can steer the initial state to the final state. It was evident from the theorem, that 

relative controllability shares the same dimension of meaning with properness of the system. 

Theorem 4.2 showed that the system is relatively controllable if and only if 0 is in the 

interior of the reachable set supports the closeness and convexity of the reachable set which 

in turn supports its normality. A system is normal when the reachable set is strictly convex. 

This gives form to the optimal control. By reversed argument, if 0 is not in the interior of the 

reachable set, then it is on the boundary and optimal control is achieved at the first contact of 

the moving or stationary target with the attainable set.  

This argument is supported by theorem 4.1 to establish the existence of optimal control. The 

uniqueness and form of control is derived from calculus of variation based on the 

maximization of the objective function y(t, u) in the reachable set. 

We have then forged ahead to achieve solution near the origin to another Neutral 

Functional Differential Equation of the form 
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ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)௧)]   = Lݔ ,ݐ)௧  + fݔ(௧ݔ ׬ +  (௧ݔ ݐ)ݔ(ݐ)ܣ + ߠ݀(ߠ

଴
ିஶ                       

 , ݁ݎℎ݁ݓ

                L(ݐ, ∑   =   (௧ݔ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬ +  ,ݐ)ܣ ݐ)ݔ(ߠ + ߠ݀(ߠ

଴
ି ஶ                                

is a bounded linear operator, and f(ݔ,ݐ௧) is a perturbation function. The nxn matrix functions 

Ak and A(t ,θ) are measurable  in (t, s) є ExE,  θ є [-∞,0). 

The energy method of Alexander Mikhailovick Lyapunov (1829) which stipulates that, in a 

stable system, the total energy in the system will be a minimum at the equilibrium point was 

used to establish results. This no doubt paved the way for discussions on stability of various 

nonlinear functional equations. 

The statements of the problem were thus formulated: 

Suppose we are given a Neutral Functional Differential Equation as in equations above, and it 

is required to move the solution (࢚)࢞ from an initial point  ࢞૙   at time  ࢚૙  to a terminal point 

 ૚.The problem arises as to whether it is possible to carry out this task in finite࢚  ૚  at time࢞

time. As an illustration, we considered the system 

ሶݔ                                                                                                                       (ݐ)ݔܽ− =   

Clearly, the solution of the above system is 

                                                            A݁ି௔௧ = (ݐ)ݔ                                                          

If we desire to drive this solution to the origin .that is, null controllability, we observed that, it 

cannot be achieved in finite time because (ݐ)ݔ  tends to zero only when t tends to infinity. 

Since this cannot be achieved in finite time, we need to modify the system to be able to bring 

 to 0 in finite time. The process of modification is called controllability which answered  (࢚)࢞

the controllability problem. The optimal control problem is formulated as follows: Having 

guaranteed controllability of the system in question is there an admissible control u* such 

that the solution  ࢚)࢞, ф,  of the system hits a continuously moving target point in (∗࢛

minimum time t*. Here u* is the optimal control and t* the minimum time. Once it is 

guaranteed that such a control exists, we showed it is unique and Bang-Bang. 

       Finally, the system 

 
ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ

଴
ିஶ : ௧బݔ

= ф. 

                                  (a nonlinear infinite neutral system) 

was presented and investigated for global uniform asymptotic stability in the large  

We considered the system below, 
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     ௗ

ௗ௧
,ݐ)ܦ] [(௧ݔ = ,ݐ)ܮ ௧ݔ(௧ݔ + ,ݐ)݂ (௧ݔ + ׬ ,ݐ)ܣ ݐ)ݔ(ߠ + ఏ݀(ߠ   

ஶ
଴                             

                       (circularity of the function from -∞ to 0, and from 0 to ∞). 

 We linearized the system as in Chukwu (1992) by setting ݔ௧ = z in L; a specified function 

inside the function ݐ)ܮ,  .௧  with no loss of generalityݔ ௧    to have L(t, z )ݔ(௧ݔ

Thus the system becomed 

             
ௗ

ௗ௧
,ݐ)ܦ] ,ݐ)ܮ  = [(௧ݔ ௧ݔ(ݖ + ׬ ,ݐ)ܣ ஶ(ߠ

଴ ݐ)ݔ + ఏ݀(ߠ + ,ݐ)݂                                   (௧ݔ

 Evidently 

,ݐ)ܮ            ∑ =   ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬ +  ,ݐ)ܣ ଴(ߠ

ିஶ ݐ)ݔ + + ఏ݀(ߠ ׬ ஶ(ݐ)ܣ
଴ ݐ)ݔ + ఏ݀(ߠ     

,ݐ)∗ܮ            ∑   =  ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬  +   A(t, θ) x(t, θ)d஘

ஶ
ିஶ               

The representationsࡸ ,ࡸ∗  are same under the following assumptions 

,ݐ)ܮ ௧   =  lim௣→ஶݔ(ݖ ∑ ݐ)ݔ௞ܣ − ௞)௣ݓ
௞ୀ଴   +    limெ,ே→ஶ ׬ A(t, ө) x(t + ө)ds

ே
ெ               

We assume the limits exist, giving finite partial sum for the infinite series and the improper 

integrals. Thus the system 

,ݐ)∗ܮ                          ∑   =  ௧ݔ(ݖ ݐ)ݔ௞ܣ − ௞)ஶݓ
௞ୀ଴ ׬  +   A(t, θ) x(t + θ)d஘

ஶ
ିஶ               

is finite and well defined function.   

In the light of the above, the system reduced to 

                                
ௗ

ௗ௧
 [D(t, z )ݔ௧]   =  L(t, z)ݔ௧   +  ݂(ݐ, (଴ݐ)ݔ  ;(௧ݔ = фє C                  

where          L(t, z)ݔ௧   =   ∑ A୩ x(t − w୩) ௣
௞ୀ଴ ׬  +   A(t, ө) x(t + ө)dө

଴
ି௛   

Integrating   the system, after linearizing, we have the solution 

,ݐ)ݔ = (ݐ)ݔ                           ,଴ݐ ф, ׬   + (0 X (t, s) f(s,  ௦)dsݔ
௧

଴                                          

where X(t ,s) is the fundamental matrix of the homogenous part of the system . 

                                X (t , s) = I      (identity matrix); t = s 

we asked the question:  Is the solution near the origin of system (1.1.8) going to 

remain quite close for all future times?  This is the stability problem which we are desirously 

answered in the affirmative.Theorem4.8 established the conditions for exponential 

asymptotic stability in the large of our nonlinear neutral system(4.2.2). From the proof of 

theoem4.8, we observed that system(4.2.2) vis-à-vis system(4.2.9) is uniformly exponentially 

stable in the large implies that the solution of the large implies the solution of the system has 

an exponential estimate.  That is║ ݔ௧ (ݐ଴, ф) ║   ≤  β ݁௖(௧ି௧బ)║ф║ . 
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 Clearly, as    t →∞     , ║ ݔ௧ (ݐ଴,  ф) ║→0                 Since the trivial solution has 

been shown to be uniformly stable, system (4.2.9) is said to be uniformly asymptotically 

stable.  Evidently, uniform exponential asymptotically stable in the large of a system 

guarantees its uniform asymptotic stability. We stated the realization as a theorem4.9,thus. 

Theorem 4.9: (Global Uniform Asymptotic Stability). 

             Consider the nonlinear neutral system (4.2.9) 

  
ௗ

ௗ௧
 [ D(t, ݔ௧) ] =  L(t , z) ݔ௧   +  f(t , ݔ௧)  + ׬ A(t) x(t + ө)dө

଴
ିஶ ௧బݔ  ;  

 = ф 

Under all the assumptions of theorem 4.8, assume further that 

System (4.2.9) satisfies   f( t , 0) = 0,  

then system (4.2.9) is uniformly exponentially asymptotically stable. 

        To extend the existence results for non-linear abstract neutral differential equations in 

the work of Balachandran, Leelamani and Kim (2006) to the system with delay base was 

the objective of our research here. We therefore, presented the system  

ௗ

ௗ௧
(ݐ)ݔൣ + ,ݐ)݃ ,(ݐ)ݔ ,൯(ݐ)ଵݑ൫ݔ … , ,ݐ)ܮ = ൧((ݐ)௠ݑ)ݔ (௧ݔ + ℎ(ݐ, ,(ݐ)ݔ ,൯(ݐ)ଵݒ൫ݔ … ,  (൯(ݐ)௡ݒ൫ݔ

 x (θ) = 0 ; θ є [-h, 0], t є J = [0, ݐଵ], ݐଵ > ݐ଴  ,                                                                

with the purpose of obtaining mild solutions of the system in the Banach Spaces, using 

Schaefer’s fixed point theorem.Theorem4.9.1 established the conditions for the existence of 

mild solution of the system on the interval J = [0,ݐଵ], ݐଵ > ݐ଴    .                                                              
 

5.2: CONCLUSION 

 In this work, the linear neutral volterra-integro-differential equation was presented for 

study. Sufficient conditions for its relative controllability, existence, form and uniqueness of 

optimal control were also derived. It was proved that the optimal control for the system exists 

if only the system is relatively controllable on finite interval. The form of the optimal control 

is as given in equation (4.1.6). The establishment of its uniqueness provided a new approach. 

The optimal control is Bang-Bang and the immediacy of the applicability of the Bang-Bang 

Principle is guaranteed with the state space being the Euclidean space. (See Corduneanu 

and Lakshmikatham (1980)). 

           A nonlinear infinite neutral system was presented for stability problem. Necessary and 

sufficient conditions for solutions of the system near the origin of the system being quite 

close for all future times were derived. Theorem4.8 and Theorem4.9 established the 

conditions for exponential asymptotic stability in the large of our nonlinear neutral 

system(4.2.2) and global uniform asymptotic stability respectively. 
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       The existence results for non-linear abstract neutral differential equations in the work of 

Balachandran, Leelamani and Kim (2006) was extended to the systems with delay base of 

the form 

ௗ

ௗ௧
(ݐ)ݔൣ + ,ݐ)݃ ,(ݐ)ݔ ,൯(ݐ)ଵݑ൫ݔ … , ,ݐ)ܮ = ൧((ݐ)௠ݑ)ݔ (௧ݔ + ℎ(ݐ, ,(ݐ)ݔ ,൯(ݐ)ଵݒ൫ݔ … ,  (൯(ݐ)௡ݒ൫ݔ

 x (θ) = 0 ; θ є [-h, 0], t є J = [0, ݐଵ], ݐଵ > ݐ଴                                                                  

with the purpose of obtaining mild solutions of the system in the Banach Spaces, using 

Schaefer’s fixed point theorem. 

Theorem4.9.1 established the necessary and sufficient conditions for the system to have a 

mild solution on the interval [ݐ଴,  .[  ଵݐ
 

5.3:    RECOMMENDATION 

             We recommend that the easiest way to show that a dynamical control system is null 

controllable is to show that the system is relatively controllable in a finite interval.       

            We recommend the new approach to investigating the existence of an optimal control 

in a system. The new approach is to test for the uniqueness of an admissible control of the 

given system .This is because; we have established that, once an admissible control is proved 

to be unique, then it is an optimal control and Bang-Bang. 

              The methods and arguments used in this work can be applied to systems of semi-

linear neutral systems of the Volterra type and abstract neutral differential systems. 
 

5.4:      CONTRIBUTIONS TO KNOWLEDGE 

We have made the following contributions to knowledge in this work: 

We have established necessary and sufficient conditions for the controllability, 

existence, form and uniqueness of optimal control of Neutral Volterra Integrodifferential 

Systems, using relative controllability equivalence. 

   We have established necessary and sufficient conditions for the global uniform                                     

  asymptotic stability of Nonlinear Infinite Neutral Functional Differential Systems,   

  using the energy method of Alexander  Mikhailovick  Lyapunov (1829)   

  which stipulates that ,in a stable system, the total energy in the system will be a   

  minimum at the equilibrium point. 

  We have extended the existence results for Nonlinear Abstract Neutral Differential   

 Systems to the systems with delay base, using Schaefers’ fixed point theore 
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Appendix A 
 
 
 

3.10.        Existence Theorems 

 

Theorem 3.10.1. (Schauder’s Fixed Point Theorem) 

            If A is a closed, bounded and convex subset of a Banach space B  

and if the map T: A → A    is completely continuous, then there is a point   zєA such that  

 T( z )   = z, that is ;  z   is a fixed point  

   

 Theorem 3.10.2 (Schaefer’s fixed point theorem),  

         Let B be a normed linear space.  Let g: B → B      be completely continuous operator, 

that is, it is continuous and image of any bounded subset is contained in a compact set, and  

let Qg = {x є B: x = λgx     ,for    λ є (0, 1), that is, 0 < λ < 1},then either Qg is unbounded or 

g has a fixed point. 

 

Definition 1.12.1:   (mild solution) 

A function    ݔ(. )   is called a mild solution of the system (1.5.2) if   

 , [ for t є ( -∞ ,0    ,      0 =   (ݐ)ݔ                              

the restriction of  (ݐ)ݔ   to the interval  [ 0, τ ]   is continuous and for each  [ 0, τ ], the 

function  (ݐ)ݔ    satisfies  system( 4.4.3).  That is, the function  (ݐ)ݔ  satisfies the following 

integral equation: 

 {(௠(t)ݑ)x,…,(ଵ(t)ݑ)t ,x(t),x}g - [(௠(0)ݑ)x,…,(ଵ(0)ݑ) 0 ,x]T(t){0 + g  =   (ݐ)ݔ

                         − ׬ LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s))) ds 
௧

଴  

                          + ׬ T(t − s)h(  s , x(s), x(ݒଵ(s)), … , x(ݒ௡(s)))ds  
௧

଴                               (4.4.3) 

where   LT (t − s) g(s, x(s), x (uଵ(s)) …  x (u୫(s)))  is integrable for    s є ( -∞, t ] . 
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